LEADER 03441oam 2200553I 450 001 9910955462403321 005 20251116214211.0 010 $a1-315-15145-6 010 $a1-351-64749-0 010 $a1-4987-4001-4 024 7 $a10.1201/9781315151458 035 $a(CKB)4340000000192917 035 $a(MiAaPQ)EBC4929754 035 $a(Au-PeEL)EBL4929754 035 $a(CaPaEBR)ebr11418412 035 $a(OCoLC)999643978 035 $a(OCoLC)993964913 035 $a(FINmELB)ELB141854 035 $a(EXLCZ)994340000000192917 100 $a20180706d2017 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 14$aThe Essentials of Data Science $eKnowledge Discovery Using R /$fGraham J. Williams 205 $aFirst edition. 210 1$aBoca Raton, FL :$cCRC Press,$d2017. 215 $a1 online resource (343 pages) 225 1 $aChapman & Hall/CRC The R Series 311 08$a1-4987-4000-6 320 $aIncludes bibliographical references and index. 327 $tchapter 1 Data Science /$rGraham J. Williams --$tchapter 2 Introducing R /$rGraham J. Williams --$tchapter 3 Data Wrangling /$rGraham J. Williams --$tchapter 4 Visualising Data /$rGraham J. Williams --$tchapter 5 Case Study: Australian Ports /$rGraham J. Williams --$tchapter 6 Case Study: Web Analytics /$rGraham J. Williams --$tchapter 7 A Pattern for Predictive Modelling /$rGraham J. Williams --$tchapter 8 Ensemble of Predictive Models /$rGraham J. Williams --$tchapter 9 Writing Functions in R /$rGraham J. Williams --$tchapter 10 Literate Data Science /$rGraham J. Williams --$tchapter 11 R with Style /$rGraham J. Williams. 330 $a"The Essentials of Data Science: Knowledge Discovery Using R presents the concepts of data science through a hands-on approach using free and open source software. It systematically drives an accessible journey through data analysis and machine learning to discover and share knowledge from data.Building on over thirty years' experience in teaching and practising data science, the author encourages a programming-by-example approach to ensure students and practitioners attune to the practise of data science while building their data skills. Proven frameworks are provided as reusable templates. Real world case studies then provide insight for the data scientist to swiftly adapt the templates to new tasks and datasets. The book begins by introducing data science. It then reviews R's capabilities for analysing data by writing computer programs. These programs are developed and explained step by step. From analysing and visualising data, the framework moves on to tried and tested machine learning techniques for predictive modelling and knowledge discovery. Literate programming and a consistent style are a focus throughout the book."--Provided by publisher. 410 0$aChapman & Hall/CRC the R series (CRC Press) 606 $aDatabase management 606 $aData Preparation & Mining 606 $aR (Computer program language) 615 0$aDatabase management. 615 0$aData Preparation & Mining. 615 0$aR (Computer program language) 676 $a005.7565 700 $aWilliams$b Graham J.$0309270 801 0$bFlBoTFG 801 1$bFlBoTFG 906 $aBOOK 912 $a9910955462403321 996 $aThe Essentials of Data Science$94450981 997 $aUNINA