LEADER 04446nam 2200433 450 001 996495162103316 005 20231110231725.0 010 $a9783031132803$b(electronic bk.) 010 $z9783031132797 035 $a(MiAaPQ)EBC7120749 035 $a(Au-PeEL)EBL7120749 035 $a(CKB)25188965900041 035 $a(PPN)265857406 035 $a(EXLCZ)9925188965900041 100 $a20230310d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAnomalous relaxation in colloidal systems /$fAvinash Kumar 210 1$aCham, Switzerland :$cSpringer,$d[2022] 210 4$dİ2022 215 $a1 online resource (135 pages) 225 1 $aSpringer Theses 311 08$aPrint version: Kumar, Avinash Anomalous Relaxation in Colloidal Systems Cham : Springer International Publishing AG,c2022 9783031132797 327 $aIntro -- Supervisor's Foreword -- Acknowledgments -- Contents -- Parts of This Thesis Have Been Published in the Following Journal Articles -- 1 Introduction -- 1.1 History of the Mpemba Effect -- 1.2 Explanations for the Mpemba Effect -- 1.3 Mpemba Effect in Other Systems -- 1.3.1 Experiments -- 1.3.2 Numerical Studies -- 1.4 Mpemba Effect in Colloidal Systems -- 1.5 Particle Manipulation Techniques -- 1.5.1 Passive Trapping -- Optical Tweezers -- Magnetic Tweezers -- Holographic Tweezers -- 1.5.2 Active Trapping -- Electrokinetic Traps -- Hydrodynamic Traps -- Acoustic Traps -- Thermal Traps -- 1.6 Combining Feedback Traps and Optical Tweezers -- 1.7 Overview of the Thesis -- References -- 2 Particle Dynamics -- 2.1 The Langevin Equation -- 2.1.1 A Free Particle -- 2.1.2 A Trapped Particle -- 2.2 Fokker-Planck Equation -- 2.2.1 Adjoint of the Fokker-Planck Operator -- 2.2.2 Eigenfunctions and Eigenvalues of the Fokker-Planck Operator -- 2.2.3 Fokker-Planck Equation with no Drift -- 2.3 Heat Equation -- 2.4 Supplementary Information -- 2.4.1 A Similarity Transformation of the Fokker-Planck Operator -- References -- 3 Optical Feedback Traps -- 3.1 Principles of Optical Tweezers -- 3.2 Optical Tweezers Setup -- 3.2.1 Faraday Isolator -- 3.2.2 Acousto-Optic Deflector -- 3.2.3 Detection Scheme -- 3.2.4 Control and Data Acquisition -- 3.3 Sample Preparation -- 3.4 Calibration -- 3.4.1 Position Calibration -- 3.4.2 Trap-Stiffness Calibration -- 3.5 Virtual Harmonic Potential -- 3.6 Isotropic Traps -- 3.7 Virtual Double-Well Potential -- 3.8 Discussion -- References -- 4 Mpemba Effect -- 4.1 Definition of the Mpemba Effect -- 4.2 Energy Landscape for the Mpemba Effect -- 4.2.1 Choice of Potential Energy Landscape -- 4.3 Imposing an Instantaneous Quench via Initial Conditions -- 4.4 Measuring the Distance to Equilibrium -- 4.4.1 L1 distance Distance. 327 $a4.4.2 Kullback-Leibler (KL) Divergence -- 4.5 Observation of the Mpemba Effect in Asymmetric Domains -- 4.6 Analysis Based on Eigenfunction Expansion -- 4.6.1 Calculation of the a2 Coefficient -- 4.6.2 Relationship Between D and the a2 Coefficient -- 4.7 Strong Mpemba Effect -- 4.8 Geometric Interpretation of the Mpemba Effect -- 4.8.1 Thermalization in a Double-Well Potential with Metastability -- 4.8.2 Metastable Mpemba Effect -- 4.8.3 Metastable Mpemba Effect in Terms of Extractable Work -- 4.9 Discussion -- 4.10 Supplementary Information -- 4.10.1 Infinite Potential vs. Finite Potential -- 4.10.2 Calculation of Equilibration Time -- 4.10.3 Equilibration Time Versus the a2 Coefficient -- 4.10.4 Barrier Height vs. Discontinuity in Local Equilibrium -- References -- 5 Inverse Mpemba Effect -- 5.1 Energy Landscape for the Inverse Mpemba Effect -- 5.2 Inverse Mpemba Effect in an Asymmetric Potential -- 5.3 Analysis Based on Eigenfunction Expansion -- 5.4 Discussion -- References -- 6 Higher-Order Mpemba Effect -- 6.1 Experiment -- 6.2 Eigenfunction Analysis -- 6.3 Mpemba Effect in a Potential with One Local Minimum -- 6.4 Discussion -- Reference -- 7 Conclusions -- 7.1 Summary of the Results Obtained -- 7.2 Final Remarks -- References. 410 0$aSpringer Theses 606 $aColloids$xFreezing 615 0$aColloids$xFreezing. 676 $a016.54532 700 $aAvina?s?a Kuma?ra$01337591 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a996495162103316 996 $aAnomalous relaxation in colloidal systems$93057063 997 $aUNISA LEADER 06165nam 2200793Ia 450 001 9910954079703321 005 20251117095352.0 010 $a1-136-97359-1 010 $a1-136-97360-5 010 $a0-203-85202-8 024 7 $a10.4324/9780203852026 035 $a(CKB)2550000000099081 035 $a(EBL)957755 035 $a(OCoLC)798534070 035 $a(SSID)ssj0000622658 035 $a(PQKBManifestationID)11926374 035 $a(PQKBTitleCode)TC0000622658 035 $a(PQKBWorkID)10643074 035 $a(PQKB)11685050 035 $a(MiAaPQ)EBC957755 035 $a(Au-PeEL)EBL957755 035 $a(CaPaEBR)ebr10542473 035 $a(CaONFJC)MIL761022 035 $a(OCoLC)783882882 035 $a(OCoLC)701015765 035 $a(FINmELB)ELB139905 035 $a(EXLCZ)992550000000099081 100 $a20110527d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aChildren and exercise XXVII $ethe proceedings of the XXVIIth International Symposium of the European Group of Pediatric Work Physiology, September, 2011 /$fedited by Craig Williams and Neil Armstrong 205 $a1st ed. 210 $aMilton Park, Abingdon, Oxon ;$aNew York $cRoutledge$d2012 215 $a1 online resource (305 p.) 300 $aDescription based upon print version of record. 311 08$a0-415-85809-7 311 08$a0-415-57859-0 320 $aIncludes bibliographical references and indexes. 327 $aFront Cover; Children and Exercise XXVII; Copyright Page; Contents; Preface; Acknowledgements; Part I:The Josef Rutenfranz Lecture; 1. From playground to podium: N. Armstrong; Part II:Keynote Lectures; 2. Evidence-based physical activity interventions in children: A.S. Singh, E A.L.M. Verhagen, M.J.M. Chinapaw and W. van Mechelen; 3. Physical activity and early markers of cardiovascular diseases in obese children: N.J. Farpour-Lambert; 4. Differential motor-activation patterns: The most comprehensive explanation for child-adult performance differences: B. Falk and R. Dotan 327 $a5. Understanding the genetics of birth weight: R.M. FreathyPart III:Exercise Physiology; 6. Child and adolescent differences in economy at various speeds across a two-year time period: R.W. Moore, T.S. Wenzlick, K.A. Pfeiffer, and S.G. Trost; 7. Fuel use responses in young boys and girls during submaximal exercise: A.D. Mahon, L.M. Guth, M.P. Rogowski, and K.A. Craft; 8. RER variability analysis by sample entropy: Comparing trained and untrained adolescent female soccer players: G.R. Biltz, V.B. Unnithan, S.R. Brown, S. Marwood, D.M. Roche, M. Garrard, and K. Holloway 327 $a9. Effect of exercise mode on fat oxidation and 'fatmax' in pre- to early pubertal girls and boys: K. Tolfrey and J.K. Zakrzewski10. Prefrontal cortex oxygenation and muscle oxygenation during incremental exercise in children: A near-infrared spectroscopy study: M. Luszczyk, S. Kujach, R.A. Olek, R. Laskowski, and A. Szczesna-Kaczmarek; 11. Comparative analysis of quadriceps endurance during sustained submaximal isometric contractions in children and adults: A. Bouchant, A. Abdelmoula, V. Martin, C. Lavet, C.A. Williams, and S. Ratel 327 $a12. Heat sensation of obese and non-obese pubescent boys during cycling and recovery in the heat: P.L. Sehl, G.T. Leites, J.B. Martins, G.S. Cunha, and F. Meyer13. Ability of milk to replace fluid losses in children after exercise in the heat: K. Volterman, J. Obeid, B. Wilk, and B.W. Timmons; Part IV:Physical Activity and Health; 14. Relationships between cardiometabolic risk factors and aerobic fitness: a fresh look: R.G. McMurray, C. Lehman, P.A. Hosick, and A. Bugge 327 $a15. Effects of a school-based cross-curricular physical activity intervention on cardiovascular disease risk factors in 11-14 year olds: G.J. Knox, J.S. Baker, B. Davies, A. Rees, K. Morgan, and N.E. Thomas16. Impact of changes in screen time on blood profiles and blood pressure in adolescents over a two year period: D.R. DengeI, M.O. Hearst, J.H. Harmon, and L.A. Lytle; 17. Aerobic fitness and physical activity are related to lean body mass and not adiposity in preschoolers: L. Gabel, N.A. Proudfoot, and B. W. Timmons 327 $a18. Validation of the GENEA waveform accelerometer for assessment of children's physical activity: L.R.S. Phillips, A. V. Rowlands, and C. G. Parfitt 330 $a"Children and Exercise XXVI presents the latest scientific research into paediatric exercise physiology, endocrinology, kinanthropometry, growth and maturation, and youth sport. Including contributions from a wide-range of leading international experts, the book is arranged into seven thematic sections addressing:cardiovascular responses to exercisegenetics, metabolism and physical activitylimiting factors of muscle exerciserespiratory responses to exerciseepidemiology in physical activity and obesityphysical activity and nutritionmetabolic disorders and exercise.Offering critical reviews of current topics and reports of current and on-going research in paediatric health and exercise science, this is a key text for all researchers, teachers, health professionals and students with an interest in paediatric sport and exercise science, sports medicine and physical education"--$cProvided by publisher. 517 3 $aChildren and exercise 27 517 3 $aChildren and exercise twenty-seven 606 $aExercise for children$vCongresses 606 $aChildren$xPhysiology$vCongresses 606 $aPediatric sports medicine$vCongresses 615 0$aExercise for children 615 0$aChildren$xPhysiology 615 0$aPediatric sports medicine 676 $a613.7042 676 $a617.1027083 686 $aMED069000$aMED075000$aMED084000$2bisacsh 701 $aArmstrong$b Neil$01704532 701 $aWilliams$b Craig$01874754 712 12$aPediatric Work Physiology Meeting 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910954079703321 996 $aChildren and exercise XXVII$94485508 997 $aUNINA