LEADER 03694nam 2200493 450 001 9910511670303321 005 20190826145055.0 010 $a90-04-34114-5 024 7 $a10.1163/9789004341142 035 $a(CKB)3710000001095504 035 $a(MiAaPQ)EBC4825530 035 $a(OCoLC)978807780$z(OCoLC)978617270$z(OCoLC)979241348$z(OCoLC)979410820$z(OCoLC)979960594$z(OCoLC)980133355 035 $a(nllekb)BRILL9789004341142 035 $a(EXLCZ)993710000001095504 100 $a20170406h20172017 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 14$aThe Visigoths in Gaul and Iberia (update) $ea supplemental bibliography, 2013-2015 /$fby Alberto Ferreiro 210 1$aLeiden, Netherlands ;$aBoston, [Massachusetts] :$cBrill,$d2017. 210 4$d©2017 215 $a1 online resource (303 pages) 225 1 $aThe Medieval and Early Modern Iberian World,$x1569-1934 ;$vVolume 63 300 $aIncludes indexes. 311 $a90-04-34113-7 327 $aPreliminary Material -- Bibliographies -- Historiography -- Personalia -- Hispania -- Germanic -- Muslim -- Social ? Political ? Economic -- Civil Law -- Chronicles ? Literature -- Linguistics -- Paleography -- General Studies -- Canon Law ? Pseudo-Isidorus -- Councils -- Heresy -- Monasticism -- Organization -- Liturgy -- Mariology -- Music -- Apringius Pacensis -- Avitus Bracarensis -- Bachiarius -- Braulionis Caesaraugustanus -- Egeria in Gallecia Mon -- Eugenius Toletanus I, II, III -- Fructuosus Bracarensis -- Gregorius Illiberitanus -- Hagiographica -- Ildefonsus Toletanus -- Iohannes Biclarensis -- Iulianus Toletanus -- Leander Hispalensis -- Licinianus Cartaginensis -- Pacianus Barcinonensis -- Potamius Olisiponensis -- Prudentius -- Sisebutus Rex -- Taio Caesaraugustanus -- Valerius Bergidensis -- Miscellanea Patristica -- Isidorus Hispalensis -- General Studies -- Urban and Rural Space -- Architecture -- Art -- Epigraphy -- Minor Arts -- Numismatics -- Funeraria -- Social ? Political ? Economic -- Archaeology -- Ecclesiastical -- Linguistics -- Liturgy -- Hydatius (Idacius) Aquae Flaviae ep. -- Martinus Bracarensis -- Orosius Paulus -- Priscillianus Abulensis -- Archaeology -- Ecclesiastical -- Social ? Political ? Economic -- Caesarius Arelatensis -- Sidonius Apollinaris -- Alans -- Basques-Bagaudae -- Byzantines -- Jews -- Vandals -- Collected Essays -- Studia Honoraria -- Congresses ? Symposia ? Colloquia -- Subject Index -- Author Index. 330 $aThe bibliography includes material published from 2013 to 2015. Following on from the first bibliography (Brill, 1988) and its updates (Brill 2006, 2008, 2011, 2014) this volume covers recent literature on: Archaeology, Liturgy, Monasticism, Iberian-Gallic Patristics, Paleography, Linguistics, Germanic and Muslim Invasions, and more. In addition, peoples such as the Vandals, Sueves, Basques, Alans and Byzantines are included. The book contains author and subject indexes and is extensively cross-indexed for easy consultation. A periodicals index of hundreds of journals accompanies the volume. 410 0$aMedieval and early modern Iberian world ;$vVolume 63. 606 $aVisigoths$zFrance$vBibliography 606 $aVisigoths$zSpain$vBibliography 608 $aElectronic books. 615 0$aVisigoths 615 0$aVisigoths 676 $a016.94601 700 $aFerreiro$b Alberto$0778099 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910511670303321 996 $aThe Visigoths in Gaul and Iberia (update)$91938397 997 $aUNINA LEADER 08362nam 22006615 450 001 9910953934403321 005 20251116195058.0 010 $a94-011-0750-5 024 7 $a10.1007/978-94-011-0750-1 035 $a(CKB)3400000000121471 035 $a(SSID)ssj0000925541 035 $a(PQKBManifestationID)11552110 035 $a(PQKBTitleCode)TC0000925541 035 $a(PQKBWorkID)10881046 035 $a(PQKB)10330913 035 $a(DE-He213)978-94-011-0750-1 035 $a(MiAaPQ)EBC3104982 035 $a(EXLCZ)993400000000121471 100 $a20121227d1994 u| 0 101 0 $aeng 135 $aurnn#---mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aModelling Potential Crop Growth Processes $eTextbook with Exercises /$fby J. Goudriaan, H.H. Van Laar 205 $a1st ed. 1994. 210 1$aDordrecht :$cSpringer Netherlands :$cImprint: Springer,$d1994. 215 $a1 online resource (XII, 239 pages) 225 1 $aCurrent Issues in Production Ecology ;$v2 300 $aBibliographic Level Mode of Issuance: Monograph 311 1 $a0-7923-3219-9 311 1 $a0-7923-3220-2 320 $aIncludes bibliographical references and index. 327 $a1 Introduction -- 1.1 Levels of understanding of crop growth -- 1.2 Growth factors and production situations -- 1.3 CO2 assimilation as a basis -- 1.4 Some general modelling considerations -- 1.5 Outline of the book -- 2 The main seasonal growth pattern -- 2.1 Introduction -- 2.2 The growth phases -- 2.3 Exponential-linear growth: one equation -- 2.4 A special case: rm, cm,p1 and s are constant -- 2.5 Application for variable weather conditions -- 2.6 Generalization on approaching the senescence phase -- 2.7 A term for losses due to maintenance respiration -- 2.8 Additional exercises -- 2.9 Solutions to the exercises -- 2.10 Symbols and acronyms used in Chapter 2 -- 3 Climatic factors -- 3.1 Importance of the diurnal course -- 3.2 The daily progress of the incident global radiation -- 3.3 Temperature -- 3.4 Humidity -- 3.5 Wind speed -- 3.6 Annual temperature course -- 3.7 Additional exercises -- 3.8 Solutions to the exercises -- 3.9 Symbols and acronyms used in Chapter 3 -- 4 Assimilate flow and respiration -- 4.1 Introduction -- 4.2 Growth and respiration -- 4.3 Short-circuiting the assimilate pool on the long-term -- 4.4 Growth respiration and chemical composition -- 4.5 Maintenance respiration -- 4.6 Additional exercises -- 4.7 Solutions to the exercises -- 4.8 Symbols and acronyms used in Chapter 4 -- 5 Development and growth -- 5.1 Introduction -- 5.2 Development stages -- 5.3 Development rate and environmental factors -- 5.4 Distribution of dry matter and development stage -- 5.5 Leaf area growth -- 5.6 Solutions to the exercises -- 5.7 Symbols and acronyms used in Chapter 5 -- 6 Radiation in crops -- 6.1 Introduction -- 6.2 A model crop with black horizontal leaves -- 6.3 Black leaves that are not horizontal -- 6.4 Horizontal leaves that are not black -- 6.5 Scattering leaves, non-horizontal -- 6.6 Scattering by leaves and soil -- 6.7 Distribution of absorption of light over the leaf canopy -- 6.8 Clustering -- 6.9 Additional exercise -- 6.10 Solutions to the exercises -- 6.11 Symbols and acronyms used in Chapter 6 -- 7 Leaf energy balance and transpiration -- 7.1 Introduction -- 7.2 Energy balance of a non-transpiring leaf -- 7.3 Thermal (?long-wave?) radiation: 3 ? 20 ?m -- 7.4 Evaporation from a wet surface -- 7.5 Leaf transpiration -- 7.6 Units of conductance: m s?1 or ?mol m?2 s?1 -- 7.7 Notation with the coupling factor Omega -- 7.8 Additional exercises -- 7.9 Solutions to the exercises -- 7.10 Symbols and acronyms used in Chapter 7 -- 8 Analysis of leaf CO2 assimilation -- 8.1 Introduction -- 8.2 The photosynthesis-light response curve -- 8.3 The light and dark processes in CO2 assimilation -- 8.4 Limitation by low CO2 -- 8.5 Maximal photosynthetic capacity (at both high light and high CO2) -- 8.6 Limitation by low light -- 8.7 The C3 cycle, photorespiration and the CO2 compensation point -- 8.8 Temperature -- 8.9 Additional exercises -- 8.10 Solutions to the exercises -- 8.11 Symbols and acronyms used in Chapter 8 -- References -- Appendix 1 Richards and Gompertz functions -- A1.1 Richards function -- A1.2 Gompertz function -- Appendix 2 Gaussian integration in simulation modelling -- A2.1 Introduction -- A2.2 Canopy photosynthesis -- A2.3 Solution to the exercise -- Appendix 3 SUCROS1 ? A crop growth model for potential production -- A3.1 Introduction -- A3.2 Initial conditions -- A3.3 Crop development (Chapter 5) -- A3.6 Carbohydrate production (Chapter 4) -- A3.7 Maintenance (Chapter 4) -- A3.8 Dry matter partitioning (Chapter 5) -- A3.9 Growth of plant organs and translocation (Chapts 4 and 5) -- A3.10 Leaf and ear development (Chapter 5) -- A3.11 Dry matter production -- A3.12 Weather data(Chapter 3) -- A3.13 Carbon balance check (Chapter 4) -- A3.14 Run control -- A3.15 Structure and listing of the model -- A3.16 Definition of the abbreviations used in SUCROS1 -- Appendix 4 SUCROS1 ? adapted for soil reflection -- Appendix 5 The FORTRAN Simulation Translator (FST), a simulation language -- A5.1 Introduction -- A5.2 The structure of the model -- A5.3 FST example program simulating logistic growth -- A5.4 Comment lines and FST statements -- A5.5 Rules for FST keywords, variable names and values -- A5.6 Definition of input values of the model (PARAMETER, INCON, CONSTANT, FUNCTION) -- A5.7 Hierarchy of operations in expressions, and the use of FST functions and FORTRAN functions -- A5.8 FST keywords for output (TITLE, PRINT, OUTPUT) -- A5.9 FST run control keywords (TRANSLATION_GENERAL, TRANSLATION_FSE, TIMER, FINISH) -- A5.10 Weather data in FST programs (WEATHER) -- A5.11 Rerun facility, the END keyword -- A5.12 FORTRAN subroutines with FST, the STOP keyword -- Appendix 6 Derivation of the equations for exponential extinction of horizontal, non-black leaves (after Goudriaan (1977), pg 13?14). 330 $aWe dedicate this book to professor C. T. de Wit (1924 - 1993) who initiated Production Ecology as a school of thought at the Wageningen Agricultural Univer­ sity (see Rabbinge et at. , 1990). To acknowledge the leading role of C. T. de Wit, a recently formed graduate school at this university in Production Ecology was named after him. Production Ecology is the study of ecological processes, with special attention to flows of energy and matter as factors that determine the productivity of ecological systems. Agro-ecosystems are a special case of ecosystems which are much better suited for the productivity approach than natural ecosystems are. This is the reason for the strong role of agricultural research in production ecology. On the other hand, it must be recognized that the spatial heterogeneity of natural ecosys­ tems and their species richness may alter some ecophysiological relationships. However, the basic physical, chemical and physiological processes will be the same. De Wit introduced the state variable approach as the basis for simulation mod­ elling. In this approach the floating character of nature is schematized into a series of snapshots over time in which the states are frozen at each separate moment. The current state determines how the rates of change will lead to the next snapshot. This way of thinking enables a clear and workable representation of interacting simul­ taneous processes, without compromising on the mathematics. 410 0$aCurrent Issues in Production Ecology ;$v2 606 $aBotany 606 $aEcology 606 $aDifferential equations 606 $aPlant Science 606 $aEcology 606 $aDifferential Equations 615 0$aBotany. 615 0$aEcology. 615 0$aDifferential equations. 615 14$aPlant Science. 615 24$aEcology. 615 24$aDifferential Equations. 676 $a580 700 $aGoudriaan$b J.$4aut$4http://id.loc.gov/vocabulary/relators/aut$022326 702 $aLaar$b H. H. van$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910953934403321 996 $aModelling Potential Crop Growth Processes$94430561 997 $aUNINA