LEADER 04469nam 2200565Ia 450 001 9910953907903321 005 20251116181424.0 010 $a1-61761-951-5 035 $a(CKB)2550000001040577 035 $a(EBL)3017677 035 $a(SSID)ssj0001074061 035 $a(PQKBManifestationID)11600543 035 $a(PQKBTitleCode)TC0001074061 035 $a(PQKBWorkID)11187178 035 $a(PQKB)10837042 035 $a(MiAaPQ)EBC3017677 035 $a(Au-PeEL)EBL3017677 035 $a(CaPaEBR)ebr10654648 035 $a(OCoLC)923653238 035 $a(BIP)14338228 035 $a(EXLCZ)992550000001040577 100 $a20021011d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aAdvances in laser and optics research$hVolume 3 /$fWilliam T. Arkin, editor 205 $a1st ed. 210 $aNew York $cNova Science$dc2010 215 $a1 online resource (208 p.) 225 1 $aAdvances in Laser and Optics Research ;$vv.3 300 $aDescription based upon print version of record. 311 08$a1-59033-855-3 320 $aIncludes bibliographical references and index. 327 $aCONTENTS -- PREFACE -- ADVANCES IN COPPER LASER TECHNOLOGY:KINETIC ENHANCEMENT -- 1. Introduction -- 2. Background -- 2.1. Role of Pre-Pulse Electron Density -- 2.2. Engineering the Pre-Pulse Electron Density -- 3. Operating Characteristics of KE-CVLs -- 3.1. Output Power and Efficiency -- 3.2. Pulse Rate Scaling of KE-CVLS -- 3.3. Specific Average-Output Power Scaling -- 3.4. Temporal Characteristics of KE-CVL Output -- 3.5. Spatial Characteristics of KE-CVL Output -- 3.6. High Beam Quality Operation of KE-CVLs -- 4. Diagnostics of Kinetically Enhanced CVLs -- 4.1. Copper Density Measurement -- 4.2. Computer Modelling of KE-CVLs -- 5. Operation of KE-CVLS in Oscillator-Amplifier Configuration -- 6. High Power UV Generation from KE-CVLs -- MERGING QUANTUM THEORY INTO CLASSICALPHYSICS -- Abstract -- 1. Introduction -- 2. Comparison of Classical and Quantum Electrodynamics -- 2.1. Modes of the Electromagnetic Waves -- 2.2. Elementary Light-Matter Interaction in Classical Optics -- 2.3. The Classical Zero Point Field -- 2.4. The Zero Point Field and the Detection of Low Level Light -- 2.5. Spontaneous Emission and Absorption: Einstein's Coefficients -- 2.6. Mechanism of Emission and Absorption of a Photon -- 2.7. Comparison of Quantum and Classical Electrodynamics -- 3. Some Properties of Nonlinear Waves: The (3+0)D Solitons -- 3.1. The Filaments of Light -- 3.2. Perturbation of a Filament by a Magnetic Nonlinearity -- 4. Tentative Setting of a Classical Theory Including the Important Quantum Results -- 4.1. Is Matter Made of Electromagnetic (3+0)D Solitons? -- 4.2. Inserting the Quantum Calculation of Energies into the Classical Theory -- 5. Conclusion -- A POSSIBLE SCENARIO FOR VOLUMETRICDISPLAY THROUGH NANOPARTICLE SUSPENSIONS -- STATISTICAL PROPERTIES OF NONLINEARPHASE NOISE -- 1. Introduction -- 2. Joint Statistics of Nonlinear Phase Noise and Electric Field -- 2.1. Normalization of Nonlinear Phase Noise -- 2.2. Series Expansion -- 2.3. Joint Characteristic Function -- 3. The Probability Density Function of Nonlinear Phase Noise -- 4. Some Joint Characteristic Functions -- 4.1. Joint Characteristic Function of Nonlinear Phase Noise and Received Intensity -- 4.2. Joint Characteristic Function of Nonlinear Phase Noise and Phase of Amplifier Noise -- 5. Error Probability of DPSK Signal -- 5.1. Phase Distribution -- 5.2. Error Probability -- 5.3. Approximation of Independence -- 5.4. Numerical Results -- 6. Compensation of Nonlinear Phase Noise -- 6.1. Linear Compensation -- 6.2. Nonlinear Compensation. 330 $aSuch fields as communications, materials science, computing and medicine are leaping forward based on developments in optics. This series presents leading edge research on optics and lasers from researchers around the globe. 410 0$aAdvances in Laser and Optics Research 606 $aLasers$xResearch 606 $aOptics$xResearch 615 0$aLasers$xResearch. 615 0$aOptics$xResearch. 701 $aArkin$b William T$01861314 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910953907903321 996 $aAdvances in laser and optics research$94467400 997 $aUNINA