LEADER 05589nam 2200769Ia 450 001 9910953882603321 005 20251116233802.0 010 $a0-19-967348-9 010 $a1-280-75839-2 010 $a0-19-152698-3 010 $a1-4294-7034-8 035 $a(CKB)2560000000298350 035 $a(EBL)431342 035 $a(OCoLC)609832420 035 $a(SSID)ssj0000182866 035 $a(PQKBManifestationID)11178063 035 $a(PQKBTitleCode)TC0000182866 035 $a(PQKBWorkID)10172411 035 $a(PQKB)11186354 035 $a(StDuBDS)EDZ0000072353 035 $a(MiAaPQ)EBC431342 035 $a(Au-PeEL)EBL431342 035 $a(CaPaEBR)ebr10271491 035 $a(CaONFJC)MIL75839 035 $a(MiAaPQ)EBC7039271 035 $a(Au-PeEL)EBL7039271 035 $a(OCoLC)1336402550 035 $a(EXLCZ)992560000000298350 100 $a20070117d2006 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aIntroduction to quantum information science /$fVlatko Vedral 205 $a1st ed. 210 $aOxford $cOxford University Press$dc2006 215 $a1 online resource (194 p.) 225 1 $aOxford graduate texts 300 $aDescription based upon print version of record. 311 08$a0-19-921570-7 311 08$a0-19-170678-7 320 $aIncludes bibliographical references and index. 327 $aContents; PART I: CLASSICAL AND QUANTUM INFORMATION; 1 Classical information; 1.1 Information and physics; 1.2 Quantifying information; 1.3 Data compression; 1.4 Related measures of information; 1.5 Capacity of a noisy channel; 1.6 Summary; 2 Quantum mechanics; 2.1 Dirac notation; 2.2 The qubit, higher dimensions, and the inner product; 2.3 Hilbert spaces; 2.4 Projective measurements and operations; 2.5 Unitary operations; 2.6 Eigenvectors and eigenvalues; 2.7 Spectral decomposition; 2.8 Applications of the spectral theorem; 2.9 Dirac notation shorthands; 2.10 The Mach-Zehnder interferometer 327 $a2.11 The postulates of quantum mechanics2.12 Mixed states; 2.13 Entanglement; 2.14 Summary; 3 Quantum information-the basics; 3.1 No cloning of quantum bits; 3.2 Quantum cryptography; 3.3 The trace and partial-trace operations; 3.4 Hilbert space extension; 3.5 The Schmidt decomposition; 3.6 Generalized measurements; 3.7 CP-maps and positive operator-valued measurements; 3.8 The postulates of quantum mechanics revisited; 3.9 Summary; 4 Quantum communication with entanglement; 4.1 Pure state entanglement and Pauli matrices; 4.2 Dense coding; 4.3 Teleportation; 4.4 Entanglement swapping 327 $a4.5 No instantaneous transfer of information4.6 The extended-Hilbert-space view; 4.7 Summary; 5 Quantum information I; 5.1 Fidelity; 5.2 Helstrom's discrimination; 5.3 Quantum data compression; 5.4 Entropy of observation; 5.5 Conditional entropy and mutual information; 5.6 Relative entropy; 5.7 Statistical interpretation of relative entropy; 5.8 Summary; 6 Quantum information II; 6.1 Equalities and inequalities related to entropy; 6.2 The Holevo bound; 6.3 Capacity of a bosonic channel; 6.4 Information gained through measurements; 6.5 Relative entropy and thermodynamics 327 $a6.6 Entropy increase due to erasure6.7 Landauer's erasure and data compression; 6.8 Summary; PART II: QUANTUM ENTANGLEMENT; 7 Quantum entanglement-introduction; 7.1 The historical background of entanglement; 7.2 Bell's inequalities; 7.3 Separable states; 7.4 Pure states and Bell's inequalities; 7.5 Mixed states and Bell's inequalities; 7.6 Entanglement in second quantization; 7.7 Summary; 8 Witnessing quantum entanglement; 8.1 Entanglement witnesses; 8.2 The Jamiolkowski isomorphism; 8.3 The Peres-Horodecki criterion; 8.4 More examples of entanglement witnesses; 8.5 Summary 327 $a9 Quantum entanglement in practice9.1 Measurements with a Mach-Zehnder interferometer; 9.2 Interferometric implementation of Peres-Horodecki criterion; 9.3 Measuring the .delity between [omitted] and ?; 9.4 Summary; 10 Measures of entanglement; 10.1 Distillation of multiple copies of a pure state; 10.2 Analogy with the Carnot Cycle; 10.3 Properties of entanglement measures; 10.4 Entanglement of pure states; 10.5 Entanglement of mixed states; 10.6 Measures of entanglement derived from relative entropy; 10.7 Classical information and entanglement; 10.8 Entanglement and thermodynamics 327 $a10.9 Summary 330 $aMaking smaller and faster computers is one of the main goals of current technological progress, and is determined by the laws of physics. Quantum mechanics allows us to encode and manipulate information in ways much more efficient than with exisiting (classical) computers. The book is an introduction to this exciting subject. - ;This book offers a concise and up-to-date introduction to the popular field of quantum information. It has originated in a series of invited lecture courses at various universities in different countries. This is reflected in its informal style of exposition and presen 410 0$aOxford graduate texts. 606 $aQuantum communication 606 $aQuantum theory 615 0$aQuantum communication. 615 0$aQuantum theory. 676 $a004.1 676 $a530.12 676 $a539 676 $a004.1 700 $aVedral$b Vlatko$0624360 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910953882603321 996 $aIntroduction to quantum information science$94464667 997 $aUNINA