LEADER 10802nam 22005293 450 001 9910920927003321 005 20250102080301.0 010 $a9783527845330 010 $a352784533X 010 $a9783527845347 010 $a3527845348 010 $a9783527845323 010 $a3527845321 035 $a(MiAaPQ)EBC31867361 035 $a(Au-PeEL)EBL31867361 035 $a(CKB)37111175400041 035 $a(OCoLC)1482816044 035 $a(EXLCZ)9937111175400041 100 $a20250102d2025 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aPhotofunctional Nanomaterials for Biomedical Applications 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2025. 210 4$dİ2025. 215 $a1 online resource (588 pages) 311 08$a9783527353330 311 08$a352735333X 327 $aCover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Acknowledgments -- Chapter 1 General Introduction and Background of Photofunctional Nanomaterials in Biomedical Applications -- 1.1 Introduction to Nanomaterials -- 1.1.1 Surface and Interfacial Effects -- 1.1.2 Small Size Effect -- 1.1.3 Quantum Size Effect -- 1.1.4 Macroscopic Quantum Tunneling Effects -- 1.2 Introduction and Classification of Photofunctional Nanomaterials -- 1.2.1 Capture of Photons -- 1.2.2 Absorption and Conversion of Photons -- 1.2.3 Physical?chemical Processes at the Surface Interface -- 1.3 Introduction to Nanobiomedicine -- 1.3.1 Nano?drug Delivery Systems -- 1.3.2 Nano?imaging Technology -- 1.3.3 Nano?diagnostic Technologies -- 1.3.4 Nanotherapeutic Technology -- 1.3.5 Nano?biosensors -- 1.3.6 Tissue Engineering -- 1.4 Classification of Photofunctional Nanomaterials -- 1.4.1 Fluorescent Nanomaterials -- 1.4.1.1 Quantum Dots -- 1.4.1.2 Silicon?Based Fluorescent Nanomaterials -- 1.4.1.3 Rare Earth Luminescent Nanomaterials -- 1.4.1.4 Organic Fluorescent Nanomaterials -- 1.4.2 Photothermal Nanomaterials -- 1.4.2.1 Metallic Photothermal Nanomaterials -- 1.4.2.2 Semiconductor Photothermal Nanomaterials -- 1.4.2.3 Organic Photothermal Nanomaterials -- 1.4.2.4 Carbon?Based Photothermal Nanomaterials -- 1.4.2.5 Certain Two?Dimensional (2D) Nanomaterials -- 1.4.2.6 Biomass Photothermal Nanomaterials -- 1.4.3 Photodynamic Nanomaterials -- 1.4.3.1 Photosensitizer?Loaded Nanomaterials -- 1.4.3.2 Nanomaterials with Intrinsic Photodynamic Effects -- 1.4.3.3 Energy Conversion Nanomaterials for Photosensitizers -- 1.4.4 Photoelectrochemical Nanomaterials -- 1.4.4.1 Photocurrent Signal Generation Mechanism -- 1.4.4.2 Core Elements of Photoelectrochemical Biosensors -- 1.4.4.3 Types of Photoelectrochemical Biosensors -- 1.4.5 Photoacoustic Nanomaterials. 327 $a1.4.5.1 Introduction to Photoacoustic Imaging -- 1.4.5.2 Selection of Photoacoustic Contrast Agents -- 1.5 Conclusion -- References -- Chapter 2 Mechanism in Rare?Earth?Doped Luminescence Nanomaterials -- 2.1 Introduction -- 2.2 Composition of RE?Doped Luminescence Nanomaterials: Substrate (Host), Activator, and Sensitizer -- 2.3 Mechanism of RE?Doped Luminescence Nanomaterials -- 2.3.1 Luminescence: Downshifting, Upconversion, and Downconversion -- 2.3.1.1 Downshifting Luminescence -- 2.3.1.2 Upconversion Luminescence (UCL) -- 2.3.1.3 Downconversion/Quantum Cutting (QC) -- 2.3.2 Nonradiative Transition: Energy Transfer and Migration -- 2.3.2.1 Energy Transfer (ET) -- 2.3.2.2 Energy Migration (EM) -- 2.4 Luminescence Modulation -- 2.4.1 Crystal Field (CF) Regulation -- 2.4.2 Surface Defects Passivation -- 2.4.3 ET Regulation -- 2.4.3.1 Multicolor Tuning (MCT) of UCL -- 2.4.3.2 Energy Transfer-Triggered Novel Upconversion Excitation -- 2.4.4 Cross?Relaxation (CR) Regulation -- 2.4.4.1 Alleviating Concentration Quenching (CQ) for Highly Doped UCNPs -- 2.4.4.2 NIR Downshifting Modulation by CR -- 2.4.5 Phonon?Assisted Energy Transfer (PAET) -- 2.4.6 Dye Sensitization -- 2.4.6.1 Dye?Sensitized Core Nanoparticles -- 2.4.6.2 Dye?Sensitized Core-Shell Nanoparticles -- 2.4.7 Combined Excitation Regulation -- 2.4.7.1 ESA -- 2.4.7.2 STED -- 2.4.8 External Field Modulation -- 2.4.8.1 Magnetic Field Modulation -- 2.4.8.2 Electric Field Modulation -- 2.4.8.3 Plasma Resonance Enhancement -- References -- Chapter 3 Upconversion and NIR?II Luminescence Modulation of Rare?Earth Composites Using Material Informatics -- 3.1 Introduction -- 3.2 Typical Processes of Upconversion Luminescence -- 3.2.1 Excited State Absorption -- 3.2.2 Photon Avalanche -- 3.2.3 Energy Transfer -- 3.2.4 Cross?Relaxation -- 3.2.5 Cooperative Upconversion -- 3.2.6 Second Harmonic Generation. 327 $a3.3 Synthesis Methods of Upconversion Nanoparticles -- 3.3.1 Thermal Decomposition Methods -- 3.3.2 Hydrothermal/Solvothermal Method -- 3.3.3 Co?precipitation Method -- 3.3.4 Sol-Gel Method -- 3.3.5 Other Methods -- 3.4 Material Informatics in UCL -- 3.4.1 Genetic Algorithm -- 3.4.2 Particle Swarm Optimization -- 3.4.3 Simulated Annealing -- 3.4.4 Other Methods -- 3.5 Cancer Therapy Based on UCNPs -- 3.5.1 Photodynamic Therapy -- 3.5.2 Photothermal Therapy -- 3.5.3 Photo?Immunotherapy -- 3.5.4 Photo?Gene Therapy -- 3.6 Conclusion and Perspective -- References -- Chapter 4 Composites Based on Lanthanide?Doped Upconversion Nanomaterials and Metal?Organic Frameworks: Fabrication and Bioapplications -- 4.1 Introduction -- 4.2 Fabrications of Composites -- 4.2.1 In Situ Encapsulation -- 4.2.2 Partial Embedment -- 4.2.3 Interfacial Attachment -- 4.3 Bioapplications -- 4.3.1 Therapy -- 4.3.2 Bioimaging -- 4.3.3 Biosensing -- 4.4 Conclusion and Perspectives -- References -- Chapter 5 Lanthanide?Doped Nanomaterials for Luminescence Biosensing and Biodetection -- 5.1 Introduction -- 5.2 Basics of Optical Bioprobe and Lanthanide?Doped Nanoparticles -- 5.2.1 Design Considerations for Bioprobe Development -- 5.2.2 Characteristics of Lanthanide?Doped Nanoparticles -- 5.2.3 NIR Biological Windows -- 5.2.4 Energy Transfer: A Key Factor in Biodetection -- 5.3 Synthesis and Functionalization of Lanthanide?Dope Nanocrystals -- 5.3.1 Design and Synthesis of Core-Shell Structured Nanocrystals -- 5.3.1.1 Design of Upconversion Nanoparticles (UCNPs) -- 5.3.1.2 Design of Downshifting Nanoparticles (DSNPs) -- 5.3.2 Functionalization of Lanthanide?Doped Nanoparticles (LnNPs) -- 5.3.2.1 Amphiphilic Polymer Absorption -- 5.3.2.2 Ligand Removal -- 5.3.2.3 Ligand Exchange -- 5.3.2.4 Surface Silanization -- 5.4 Applications of Luminescence Biosensing and Biodetection. 327 $a5.4.1 Temperature Sensing -- 5.4.2 pH Sensing -- 5.4.3 Detection of Biomolecules -- 5.4.4 Detection of Small Molecules and Ions -- 5.5 Integrated Devices for Point?of?Care Testing -- 5.6 Summary -- References -- Chapter 6 Rare Earth Luminescent Nanomaterials for Gene Delivery -- 6.1 Introduction -- 6.2 UCNPs Nanovectors -- 6.3 Surface Modification -- 6.3.1 Silica -- 6.3.2 Cationic Polymers -- 6.4 Increasing Endosomal Escape -- 6.5 Controlling Delivery Strategy -- 6.5.1 Photodegradable Polymers -- 6.5.2 Changes in Carrier Surface Charge -- 6.5.3 Photoisomerization -- 6.5.4 Microenvironments Stimulation -- 6.5.4.1 Reactive Oxygen Species (ROS) -- 6.5.4.2 Matrixmetallo Proteinases (MMPs) -- 6.5.5 Light Cage -- 6.5.6 Orthogonal Control -- 6.5.7 Release Monitoring -- 6.6 Gene Therapy and Syndication -- 6.6.1 Phototherapy -- 6.6.2 Chemotherapy -- 6.7 Other Lanthanide?Based Nanovectors -- 6.8 Perspective -- References -- Chapter 7 Biosafety of Rare?Earth?Doped Nanomaterials -- 7.1 Internalization of UCNPs into Cells -- 7.2 Distribution of UCNPs -- 7.3 Excretion Behavior of UCNPs -- 7.4 The Toxic Effect of Cell Incubated with UCNPs -- 7.5 Toxic Effect of UCNPs In Vivo -- 7.6 Conclusions and Prospects -- References -- Chapter 8 Design and Construction of Photosensitizers for Photodynamic Therapy of Tumor -- 8.1 Introduction -- 8.2 Small Molecule Photosensitizers -- 8.2.1 Porphyrins -- 8.2.2 Phthalocyanines -- 8.2.3 BODIPYs -- 8.2.4 Indocyanine Dyes -- 8.2.5 AIEgens -- 8.3 Metal Complexes -- 8.3.1 Ru(II) Complexes -- 8.3.2 Ir(III) Complexes -- 8.3.3 MOFs -- 8.3.4 COFs -- 8.3.5 HOFs -- 8.4 Inorganic Photosensitizers -- 8.4.1 Carbon?Based Photosensitizers -- 8.4.2 Silicon?Based Photosensitizers -- 8.4.3 Simple Substance Photosensitizers -- 8.4.4 Metal Oxides?Based Photosensitizers -- 8.4.5 Lanthanide Upconversion Nanoparticles?Based PSs. 327 $a8.5 Conclusions and Perspectives -- References -- Chapter 9 Persistent Luminescent Materials for Optical Information Storage Applications -- 9.1 Introduction -- 9.2 Luminescent Mechanism of Persistent Luminescent Materials with Deep Traps -- 9.3 Persistent Luminescent Materials with Deep Traps -- 9.3.1 Halides or Oxyhalides -- 9.3.2 Sulfides -- 9.3.3 Oxides -- 9.3.3.1 Monobasic Cation Oxide -- 9.3.3.2 Silicate/Germanate/Stannate -- 9.3.3.3 Aluminate/Gallate -- 9.3.3.4 Titanate/Zirconate -- 9.3.3.5 Oxide Glass -- 9.3.4 Nitride or Oxynitrides -- 9.4 Outlooks -- References -- Chapter 10 The Application of Ternary Quantum Dots in Tumor?Related Marker Detection, Imaging, and Therapy -- 10.1 Introduction -- 10.1.1 Fundamental Properties of QDs -- 10.1.2 Synthesis Methods of QDs -- 10.1.2.1 Metal?Organic Synthesis Method -- 10.1.2.2 Hydrophilic Synthesis Method -- 10.1.2.3 Biosynthesis Method -- 10.1.3 Synthesis Methods of Ternary QDs -- 10.1.3.1 Hot?Injection Method -- 10.1.3.2 Ion Exchange Method -- 10.1.3.3 Hydrothermal Method -- 10.1.4 Performance Control of QDs -- 10.1.4.1 Core-Shell Structure -- 10.1.4.2 Alloying -- 10.1.4.3 Ioning -- 10.1.5 Modification of QDs -- 10.1.5.1 Surfacing Ligand Molecular Exchange -- 10.1.5.2 Amphiphilic Organic Macromolecular Coating -- 10.1.6 Characterization of QDs -- 10.1.7 Biomedical Applications of QDs -- 10.1.7.1 Biological Detection -- 10.1.7.2 Cell Imaging -- 10.1.7.3 Live Imaging -- 10.1.7.4 Tumor Therapy -- 10.2 Conclusion -- References -- Chapter 11 Nanomaterials?Induced Pyroptosis and Immunotherapy -- 11.1 Discovery and Definition of Pyroptosis -- 11.2 Mechanisms of Pyroptosis -- 11.2.1 Inflammasome and Pyroptosis -- 11.2.2 Caspases, Gasdermins, and Pyroptosis -- 11.3 Pyroptosis and Tumor Immunotherapy -- 11.3.1 Ions Interference Therapy -- 11.3.2 TME?Responsive Pyroptosis Therapy. 327 $a11.3.3 Demethylation?Activated Pyroptosis. 676 $a610.284 700 $aLi$b Chunxia$01782104 701 $aLin$b Jun$01782105 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910920927003321 996 $aPhotofunctional Nanomaterials for Biomedical Applications$94307650 997 $aUNINA