LEADER 03295nam 22007695 450 001 9910918697703321 005 20251202162236.0 010 $a9783031764325 010 $a3031764323 024 7 $a10.1007/978-3-031-76432-5 035 $a(CKB)37054813100041 035 $a(MiAaPQ)EBC31851873 035 $a(Au-PeEL)EBL31851873 035 $a(DE-He213)978-3-031-76432-5 035 $a(EXLCZ)9937054813100041 100 $a20241219d2024 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aConvex Stochastic Optimization $eDynamic Programming and Duality in Discrete Time /$fby Teemu Pennanen, Ari-Pekka Perkkiö 205 $a1st ed. 2024. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2024. 215 $a1 online resource (420 pages) 225 1 $aProbability Theory and Stochastic Modelling,$x2199-3149 ;$v107 311 08$a9783031764318 311 08$a3031764315 327 $a- 1. Convex Stochastic Optimization -- 2. Dynamic Programming -- 3. Duality -- 4. Absence of a Duality Gap -- 5. Existence of Dual Solutions. 330 $aThis book studies a general class of convex stochastic optimization (CSO) problems that unifies many common problem formulations from operations research, financial mathematics and stochastic optimal control. We extend the theory of dynamic programming and convex duality to allow for a unified and simplified treatment of various special problem classes found in the literature. The extensions allow also for significant generalizations to existing problem formulations. Both dynamic programming and duality have played crucial roles in the development of various optimality conditions and numerical techniques for the solution of convex stochastic optimization problems. 410 0$aProbability Theory and Stochastic Modelling,$x2199-3149 ;$v107 606 $aMathematical optimization 606 $aProbabilities 606 $aSocial sciences$xMathematics 606 $aFunctional analysis 606 $aCalculus of variations 606 $aSystem theory 606 $aControl theory 606 $aContinuous Optimization 606 $aProbability Theory 606 $aMathematics in Business, Economics and Finance 606 $aFunctional Analysis 606 $aCalculus of Variations and Optimization 606 $aSystems Theory, Control 615 0$aMathematical optimization. 615 0$aProbabilities. 615 0$aSocial sciences$xMathematics. 615 0$aFunctional analysis. 615 0$aCalculus of variations. 615 0$aSystem theory. 615 0$aControl theory. 615 14$aContinuous Optimization. 615 24$aProbability Theory. 615 24$aMathematics in Business, Economics and Finance. 615 24$aFunctional Analysis. 615 24$aCalculus of Variations and Optimization. 615 24$aSystems Theory, Control. 676 $a519.6 700 $aPennanen$b Teemu$01781209 701 $aPerkkiö$b Ari-Pekka$01781210 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910918697703321 996 $aConvex Stochastic Optimization$94305963 997 $aUNINA