LEADER 09137nam 22006373 450 001 9910985661403321 005 20240407090434.0 010 $a9780750345842 010 $a0750345845 035 $a(MiAaPQ)EBC31253187 035 $a(Au-PeEL)EBL31253187 035 $a(CKB)31356072700041 035 $a(Exl-AI)31253187 035 $a(OCoLC)1429731405 035 $a(EXLCZ)9931356072700041 100 $a20240407d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$a2D Materials for Energy Storage and Conversion 205 $a1st ed. 210 1$aBristol :$cInstitute of Physics Publishing,$d2022. 210 4$d©2021. 215 $a1 online resource (341 pages) 225 1 $aIOP Ebooks Series 311 08$a9780750333207 311 08$a0750333200 327 $aIntro -- Preface -- Editors biography -- Suresh C Pillai -- Priyanka Ganguly -- List of contributors -- Chapter 1 2D nanomaterials and composites for energy storage and conversion -- 1.1 Introduction to the two-dimensional world of materials -- 1.2 Fundamentals of nanomaterials -- 1.3 The introduction of two-dimensional terminology for nanomaterials -- 1.4 Extraordinary behaviour of 2D nanomaterials -- 1.4.1 Absence of van der Waals interactions in 2D nanomaterials -- 1.4.2 Higher specific surface area -- 1.4.3 Electron confinement and direct bandgap in 2D nanomaterial -- 1.5 Various classes of two-dimensional materials -- 1.5.1 Graphene -- 1.5.2 Hexagonal boron nitride (h-BN) -- 1.5.3 Transition metal dichalcogenides (TMDs) -- 1.5.4 Layered double hydroxides (LDHs) -- 1.5.5 Black phosphorus (BP) -- 1.5.6 Metal-organic frameworks (MOFs) -- 1.5.7 Covalent organic frameworks (COFs) -- 1.5.8 MXene -- 1.6 Nanocomposite-based material -- 1.7 Synthesis methods for the preparation of nanoparticles -- 1.7.1 Top-down procedure -- 1.7.2 Bottom-up procedure -- 1.8 Characterisation of the 2D nanomaterials -- 1.9 Fantastic properties of 2D materials and their applications -- 1.10 Future perspectives -- References -- Chapter 2 2D nanomaterials and their heterostructures for hydrogen storage applications -- 2.1 Introduction -- 2.2 2D nanomaterials and their heterostructures as potential candidates for hydrogen storage -- 2.2.1 Graphene and graphitic monolayers -- 2.2.2 Metal hydrides -- 2.2.3 Zeolites -- 2.2.4 2D metal-organic frameworks (MOFs) -- 2.2.5 MXenes -- 2.2.6 Transition metal dichalcogenides -- 2.3 Current challenges and future perspectives of 2D material-based hydrogen economy -- 2.4 Conclusions -- References -- Chapter 3 Defect engineering in 2D materials and its application for storage and conversion -- 3.1 Introduction. 327 $a3.2 Defect engineering in energy storage application -- 3.2.1 Batteries -- 3.2.2 Electrochemical capacitors -- 3.3 Defect engineering in the energy conversion reaction -- 3.3.1 Hydrogen evolution reactions (HER) -- 3.3.2 Oxygen reduction reaction -- 3.3.3 Oxygen evolution reaction (OER) -- 3.4 Conclusion and outlook -- References -- Chapter 4 2D nanomaterials and their heterostructures as cathode and anode materials for lithium- and sodium-ion batteries -- 4.1 Introduction to rechargeable batteries -- 4.1.1 Brief history and operating principle of the current SOA LIB -- 4.1.2 Research focus for future rechargeable alkali-ion batteries -- 4.2 Two-dimensional nanomaterials as active materials for LIBs and NIBs -- 4.2.1 2D nanomaterials -- 4.2.2 Motivation for incorporation of 2D nanomaterials into future LIBs and NIBs -- 4.2.3 Higher capacity charge-storage reaction mechanisms in 2D active-materials -- 4.2.4 Intercalation reactions -- 4.2.5 Candidate 2D active-materials for future LIBs and NIBs -- 4.3 Hybrid 2D active-materials-nanocomposites and layered heterostructures -- 4.3.1 2D-2D nanocomposites -- 4.3.2 2D Van der Waals layered heterostructures as LIB and NIB active materials -- 4.4 The rate-performance of 2D active-materials for LIBs and NIBs -- 4.4.1 Quantifying the factors limiting rate-performance in battery electrodes -- 4.4.2 Relationship between ? and physical properties -- 4.4.3 Quantifying the trade-off between absolute capacity and rate-performance in battery electrodes -- 4.4.4 The rate-performance of 2D material based battery electrodes may not be as good as commonly believed -- References -- Chapter 5 Graphene analogues and their heterostructures for ultrafast lithium and sodium-ion battery -- 5.1 Introduction -- 5.2 Lithium ion battery -- 5.3 Carbonaceous nanomaterials -- 5.3.1 Graphene -- 5.4 Graphene analogues. 327 $a5.5 Graphene, graphene analogues and their heterostructures as electrode materials for LIBs -- 5.5.1 Graphene -- 5.5.2 Graphene analogues and heterostructures -- 5.5.3 Graphene heterostructures -- 5.5.4 Graphene quantum dots (GQD) -- 5.6 Sodium-ion battery -- 5.6.1 Graphene and its composites as anode materials for NIBs -- 5.6.2 Graphene analogues and their composites as anode materials for NIBs -- 5.7 Conclusions -- References -- Chapter 6 MXenes for improved electrochemical applications -- 6.1 Introduction -- 6.2 Properties of MXene related to energy storage applications -- 6.3 MXene based electrodes for capacitors -- 6.3.1 MXene-based electrode materials for supercapacitor -- 6.3.2 MXene-graphene composite electrode materials for supercapacitor -- 6.3.3 Other MXene based composite electrode materials for supercapacitor -- 6.3.4 MXene based electrode materials for microsupercapacitors -- 6.4 MXenes in batteries -- 6.5 MXenes for transparent conductive electrodes and transparent energy storage devices -- 6.6 MXene for energy conversion -- 6.6.1 MXenes for oxygen reduction reaction (ORR) -- 6.6.2 MXenes for hydrogen evolution reaction -- 6.6.3 MXenes for CO2 reduction -- 6.7 Conclusions and future perspectives -- References -- Chapter 7 MXenes for solid-state asymmetric supercapacitors -- 7.1 Introduction -- 7.2 Synthetic methods -- 7.2.1 Top-down approach -- 7.2.2 Bottom-up approach -- 7.3 Characterisation of MXenes -- 7.3.1 Microstructure and morphology -- 7.3.2 Surface chemistry -- 7.4 MXene supercapacitors -- 7.4.1 Symmetric supercapacitors -- 7.4.2 Asymmetric supercapacitors -- 7.5 Research trend and summary -- Acknowledgements -- References -- Chapter 8 Advances in 2D nanomaterials and their heterostructures for photocatalytic energy conversion -- 8.1 Introduction -- 8.2 Photocatalytic water splitting. 327 $a8.2.1 Inorganic metal 2D semiconductors and their heterostructures -- 8.2.2 Inorganic nonmetallic 2D semiconductors and their heterostructures -- 8.2.3 Organic 2D polymer or carbon-based semiconductors and their heterostructures -- 8.3 Perspectives and future advances -- 8.4 Conclusions -- References -- Chapter 9 Theoretical prediction of catalytic activity of 2D nanomaterials for energy applications -- 9.1 Introduction -- 9.2 Theoretical foundation -- Density functional theory -- GW approximation -- BSE approximation -- 9.3 Electronic structure properties -- 9.3.1 Band structure and band alignments -- 9.3.2 Optical absorption -- 9.3.3 Charge carrier effective masses -- 9.4 Thermodynamic stability -- 9.5 pH dependence -- 9.6 Aqueous stability -- 9.7 Conclusion -- References -- Chapter 10 Emerging trends in 2D-MoS2 as an electrode material for supercapacitive application -- 10.1 Background-energy crisis -- 10.2 Supercapacitors for powering the future -- 10.3 2D-MoS2 as an electrode material for supercapacitor -- 10.3.1 Crystal structure -- 10.3.2 Synthesis routes -- 10.3.3 Electrochemical properties of MoS2 -- 10.4 Hybrid electrode for supercapacitor -- 10.4.1 MoS2/carbonaceous networks -- 10.4.2 MoS2-metal based hybrid electrodes -- 10.4.3 MoS2-conducting polymers hybrid electrodes -- 10.4.4 Flexible and wearable MoS2 supercapacitors -- 10.5 Future perspectives -- References. 330 $aThis reference text provides a comprehensive overview of the latest developments in 2D materials for energy storage and conversion. It is an invaluable reference for researchers and graduate students working with 2D materials for energy storage and conversion in the fields of nanotechnology, electrochemistry, materials chemistry, materials engineering and chemical engineering. 410 0$aIOP Ebooks Series 606 $aNanostructured materials$7Generated by AI 606 $aEnergy storage$7Generated by AI 615 0$aNanostructured materials 615 0$aEnergy storage 700 $aPillai$b Suresh C$01791854 701 $aGanguly$b Priyanka$01791855 701 $aJohn$b Honey$01791856 701 $aForouzandeh$b Parnia$01791857 701 $aPeriyat$b Pradeepan$01791858 701 $aCunningham$b Graeme$01791859 701 $aSandhyarani$b N$01791860 701 $aThomas$b Reny Thankam$01791861 701 $aJose$b Sujin P$01791862 701 $aGhosh$b Srabanti$01791863 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910985661403321 996 $a2D Materials for Energy Storage and Conversion$94329683 997 $aUNINA LEADER 02449nam 22004213a 450 001 9910917263503321 005 20250204001104.0 024 8 $ahttps://doi.org/10.7476/9788575415382 035 $a(CKB)36720818700041 035 $a(ScCtBLL)6e11fa32-7466-4c2b-87f9-01b0e9df8fda 035 $a(oapen)doab48922 035 $a(EXLCZ)9936720818700041 100 $a20250204i20092020 uu 101 0 $apor 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 02$aA Gripe Espanhola na Bahia : $esaúde, política e medicina em tempos de epidemia /$fChristiane Maria Cruz Souza 210 $cSciELO Books - Editora FIOCRUZ$d2009 210 1$a[s.l.] :$cEditora da Fundação Oswaldo Cruz,$d2009. 215 $a1 online resource (1 p.) 311 08$a9788575415382 311 08$a8575415387 311 08$a9788575411698 311 08$a8575411691 330 $aA forma como políticos, médicos, farmacêuticos e a população da Bahia se posicionaram diante da desconhecida doença que vitimou cerca de 30 milhões de pessoas nos anos de 1918/19, estrutura o livro. Nele são analisados os diversos aspectos relacionados à gripe que matou o presidente Rodrigues Alves, em janeiro de 1919, antes mesmo de tomar posse. A autora produziu "um belo e inédito mosaico", tomando por base fontes documentais as mais diversas para fundamentar a pesquisa sobre o enfrentamento do vírus influenza. Gilberto Hochman, pesquisador da COC/Fiocruz e autor do prefácio do livro, exalta "o delicado artesanato" na produção da narrativa que provoca o interesse, a surpresa e até mesmo a compaixão pelos que sofrem nos tempos de epidemia. A obra permite compreender especificidades locais da chamada República Velha na Bahia, além de possibilitar estabelecer comparações da epidemia em perspectiva global, tornando-se importante fonte de pesquisa, ainda mais neste atual momento em que a pandemia pelo vírus da influenza A (H1N1) começa a perder força no hemisfério sul, mas persiste a possibilidade de futura ocorrência de novo repique. 606 $aMedical / History$2bisacsh 606 $aMedicine 615 7$aMedical / History 615 0$aMedicine. 700 $aCruz Souza$b Christiane Maria$01787989 801 0$bScCtBLL 801 1$bScCtBLL 906 $aBOOK 912 $a9910917263503321 996 $aA Gripe Espanhola na Bahia$94322142 997 $aUNINA