LEADER 00689nam0-2200241 --450 001 9910635596803321 005 20230111125114.0 100 $a20230111d1964----kmuy0itay5050 ba 101 0 $ager 102 $aAT 105 $a 001yy 200 1 $aCarnuntum$eseine Geschichte und seine Denkmaler$fErich Swoboda 210 $aGraz$aKoln$cH. Bohlaus$d1964 215 $a316 p.$d23 cm 225 1 $aRomische Forschungen in Niederosterreich$v1 700 1$aSwoboda,$bHeinrich$f<1896-1964>$01272631 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9910635596803321 952 $aXXI A 564$b77768$fFGBC 959 $aFGBC 996 $aCarnuntum$92997601 997 $aUNINA LEADER 05606nam 22007575 450 001 9910911301003321 005 20250922144628.0 010 $a9783031706608 010 $a3031706609 024 7 $a10.1007/978-3-031-70660-8 035 $a(CKB)36619320800041 035 $a(DE-He213)978-3-031-70660-8 035 $a(MiAaPQ)EBC31850543 035 $a(Au-PeEL)EBL31850543 035 $a(OCoLC)1481799256 035 $a(EXLCZ)9936619320800041 100 $a20241119d2025 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aStochastic Transport in Upper Ocean Dynamics III $eSTUOD 2023 Workshop, Plouzané, France, September 25?28 /$fedited by Bertrand Chapron, Dan Crisan, Darryl D. Holm, Etienne Mémin, Jane-Lisa Coughlan 205 $a1st ed. 2025. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2025. 215 $a1 online resource (XIV, 345 p. 72 illus., 67 illus. in color.) 225 1 $aMathematics of Planet Earth,$x2524-4272 ;$v13 311 08$a9783031706592 311 08$a3031706595 327 $aGenerative Modelling of Stochastic Rotating Shallow Water Noise -- Collisions of Burgers Bores with Nonlinear Waves -- Average dissipation for stochastic transport equations with Lévy noise -- General Solution Theory for the Stochastic Navier-Stokes Equations -- Geometric theory of perturbation dynamics around non-equilibrium fluid flows -- On forward-backward SDE approaches to conditional estimation -- Data Assimilation for the Stochastic Camassa-Holm Equation Using Particle Filtering: A Numerical Investigation -- Some properties of a non-hydrostatic stochastic oceanic primitive equations model -- Derivation of stochastic models for coastal waves -- The Effects of Unresolved Scales on Analogue Forecasting Ensembles -- Particle-based algorithm for stochastic optimal control -- Maximum likelihood estimation of subgrid flows from tracer image sequences -- Transport noise defined from wavelet transform for model-based stochastic ocean models -- Stochastic fluids with transport noise: Approximating diffusion from data using SVD and ensemble forecast back-propagation. 330 $aThis open-access proceedings volume brings selected, peer-reviewed contributions presented at the Fourth Stochastic Transport in Upper Ocean Dynamics (STUOD) 2023 Workshop, held at IFREMER in Plouzané, France, September 25?28, 2023. The STUOD project is supported by an ERC Synergy Grant, and led by Imperial College London, the National Institute for Research in Computer Science and Automatic Control (INRIA), and the French Research Institute for Exploitation of the Sea (IFREMER). The project aims to deliver new capabilities for assessing variability and uncertainty in upper ocean dynamics. It will provide decision makers a means of quantifying the effects of local patterns of sea level rise, heat uptake, carbon storage, and change of oxygen content and pH in the ocean. Its multimodal monitoring will enhance the scientific understanding of marine debris transport, tracking of oil spills, and accumulation of plastic in the sea. All topics of these proceedings are essential to the scientific foundations of oceanography which has a vital role in climate science. Studies convened in this volume focus on a range of fundamental areas, including: Observations at a high resolution of upper ocean properties such as temperature, salinity, topography, wind, waves and velocity; Large-scale numerical simulations; Data-based stochastic equations for upper ocean dynamics that quantify simulation error; Stochastic data assimilation to reduce uncertainty. These fundamental subjects in modern science and technology are urgently required in order to meet the challenges of climate change faced today by human society. This proceedings volume represents a lasting legacy of crucial scientific expertise to help meet this ongoing challenge, for the benefit of academics and professionals in pure and applied mathematics, computational science, data analysis, data assimilation, and oceanography. 410 0$aMathematics of Planet Earth,$x2524-4272 ;$v13 606 $aGeography$xMathematics 606 $aStochastic models 606 $aDynamics 606 $aNonlinear theories 606 $aMathematics of Planet Earth 606 $aStochastic Modelling 606 $aApplied Dynamical Systems 606 $aGeografia$2thub 606 $aDinŕmica$2thub 606 $aTeories no lineals$2thub 608 $aLlibres electrňnics$2thub 615 0$aGeography$xMathematics. 615 0$aStochastic models. 615 0$aDynamics. 615 0$aNonlinear theories. 615 14$aMathematics of Planet Earth. 615 24$aStochastic Modelling. 615 24$aApplied Dynamical Systems. 615 7$aGeografia 615 7$aDinŕmica 615 7$aTeories no lineals 676 $a519 702 $aChapron$b Bertrand$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aCrisan$b Dan$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aHolm$b Darryl D$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aMémin$b Etienne$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aCoughlan$b Jane-Lisa$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910911301003321 996 $aStochastic Transport in Upper Ocean Dynamics III$94293000 997 $aUNINA