LEADER 05421nam 2200661 450 001 9910132160003321 005 20200520144314.0 010 $a3-527-66758-X 010 $a3-527-66757-1 010 $a3-527-66755-5 035 $a(CKB)3710000000245855 035 $a(EBL)1794561 035 $a(SSID)ssj0001375404 035 $a(PQKBManifestationID)11907094 035 $a(PQKBTitleCode)TC0001375404 035 $a(PQKBWorkID)11337158 035 $a(PQKB)10581123 035 $a(MiAaPQ)EBC1794561 035 $a(Au-PeEL)EBL1794561 035 $a(CaPaEBR)ebr10941719 035 $a(OCoLC)891449988 035 $a(PPN)220889058 035 $a(EXLCZ)993710000000245855 100 $a20141001h20152015 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aRelativistic quantum chemistry $ethe fundamental theory of molecular science /$fMarkus Reiher and Alexander Wolf 205 $aSecond edition. 210 1$aWeinheim an der Bergstrasse, Germany :$cWiley-VCH,$d2015. 210 4$d©2015 215 $a1 online resource (765 p.) 300 $aDescription based upon print version of record. 311 $a3-527-33415-7 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Contents; Preface; Preface to the Second Edition; Preface to the First Edition; 1 Introduction; 1.1 Philosophy of this Book; 1.2 Short Reader's Guide; 1.3 Notational Conventions and Choice of Units; Part I: FUNDAMENTALS; 2 Elements of Classical Mechanics and Electrodynamics; 2.1 Elementary Newtonian Mechanics; 2.1.1 Newton's Laws of Motion; 2.1.2 Galilean Transformations; 2.1.2.1 Relativity Principle of Galilei; 2.1.2.2 General Galilean Transformations and Boosts; 2.1.2.3 Galilei Covariance of Newton's Laws; 2.1.2.4 Scalars, Vectors, and Tensors in Three-Dimensional Space 327 $a2.1.3 Basic Conservation Laws for One Particle in Three Dimensions 2.1.4 Collection of N Particles; 2.2 Lagrangian Formulation; 2.2.1 Generalized Coordinates and Constraints; 2.2.2 Hamiltonian Principle and Euler-Lagrange Equations; 2.2.2.1 Discrete System of Point Particles; 2.2.2.2 Example: Planar Pendulum; 2.2.2.3 Continuous Systems of Fields; 2.2.3 Symmetries and Conservation Laws; 2.2.3.1 Gauge Transformations of the Lagrangian; 2.2.3.2 Energy and Momentum Conservation; 2.2.3.3 General Space-Time Symmetries; 2.3 Hamiltonian Mechanics; 2.3.1 Hamiltonian Principle and Canonical Equations 327 $a2.3.1.1 System of Point Particles 2.3.1.2 Continuous System of Fields; 2.3.2 Poisson Brackets and Conservation Laws; 2.3.3 Canonical Transformations; 2.4 Elementary Electrodynamics; 2.4.1 Maxwell's Equations; 2.4.2 Energy and Momentum of the Electromagnetic Field; 2.4.2.1 Energy and Poynting's Theorem; 2.4.2.2 Momentum and Maxwell's Stress Tensor; 2.4.2.3 Angular Momentum; 2.4.3 Plane Electromagnetic Waves in Vacuum; 2.4.4 Potentials and Gauge Symmetry; 2.4.4.1 Lorenz Gauge; 2.4.4.2 Coulomb Gauge; 2.4.4.3 Retarded Potentials; 2.4.5 Survey of Electro- and Magnetostatics; 2.4.5.1 Electrostatics 327 $a2.4.5.2 Magnetostatics 2.4.6 One Classical Particle Subject to Electromagnetic Fields; 2.4.7 Interaction of Two Moving Charged Particles; Further Reading; 3 Concepts of Special Relativity; 3.1 Einstein's Relativity Principle and Lorentz Transformations; 3.1.1 Deficiencies of Newtonian Mechanics; 3.1.2 Relativity Principle of Einstein; 3.1.3 Lorentz Transformations; 3.1.3.1 Definition of General Lorentz Transformations; 3.1.3.2 Classification of Lorentz Transformations; 3.1.3.3 Inverse Lorentz Transformation; 3.1.4 Scalars, Vectors, and Tensors in Minkowski Space 327 $a3.1.4.1 Contra and Covariant Components 3.1.4.2 Transformation Properties of Scalars, Vectors, and Tensors; 3.2 Kinematic Effects in Special Relativity; 3.2.1 Explicit Form of Special Lorentz Transformations; 3.2.1.1 Lorentz Boost in One Direction; 3.2.1.2 General Lorentz Boost; 3.2.2 Length Contraction, Time Dilation, and Proper Time; 3.2.2.1 Length Contraction; 3.2.2.2 Time Dilation; 3.2.2.3 Proper Time; 3.2.3 Addition of Velocities; 3.2.3.1 Parallel Velocities; 3.2.3.2 General Velocities; 3.3 Relativistic Dynamics; 3.3.1 Elementary Relativistic Dynamics 327 $a3.3.1.1 Trajectories and Relativistic Velocity 330 $aEinstein proposed his theory of special relativity in 1905. For a long time it was believed that this theory has no significant impact on chemistry. This view changed in the 1970's when it was realized that (nonrelativistic) Schro?dinger quantum mechanics yields results on molecular properties that depart significantly from experimental results. Especially when heavy elements are involved, these quantitative deviations can be so large that qualitative chemical reasoning and understanding is affected. For this to grasp the appropriate many-electron theory has rapidly evolved. Nowadays relativist... 606 $aQuantum chemistry 606 $aRelativistic quantum theory 615 0$aQuantum chemistry. 615 0$aRelativistic quantum theory. 676 $a541.28 700 $aReiher$b Markus$0932005 702 $aWolf$b Alexander$cDr., 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910132160003321 996 $aRelativistic quantum chemistry$92096319 997 $aUNINA LEADER 01140nam 2200361 450 001 9910910799803321 005 20241203112339.0 010 $a2-07-071848-4$bbr.$d120 F 100 $a20241203d1990----kmuy0itay5050 ba 101 0 $afre 102 $aFR 105 $a z 001yy 200 1 $aReprésentation et réalité$fHilary Putnam$gtrad. de l'anglais par Claudine Engel-Tiercelin 210 $a[Paris]$cGallimard$d1990$e27-Mesnil-sur-l'Estrée$gImpr. Firmin-Didot 215 $a226 p.$d21 cm 225 1 $aNRF essais 300 $aIndex 454 1$tRepresentation and reality 676 $a191$v23 700 1$aPutnam,$bHilary$f<1926-2016>$044780 702 1$aTiercelin,$bClaudine$f<1952-....> 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a9910910799803321 952 $aDAM A30 PUTH 02$b2024/8593$fFLFBC 959 $aFLFBC 961 $aPhilosophie de l'esprit 961 $aSciences cognitives 961 $aFonctionnalisme (psychologie) 961 $aReprésentation (philosophie) 961 $aContexte (linguistique) 996 $aReprésentation et réalité$94296162 997 $aUNINA