LEADER 00954nam a22002531i 4500 001 991001059159707536 005 20040214170648.0 008 040318s1963 uik|||||||||||||||||eng 035 $ab12711858-39ule_inst 035 $aARCHE-069611$9ExL 040 $aDip.to Filosofia$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a823.9 100 1 $aQuiller-Couch, Arthur Thomas$0296359 245 14$aThe astonishing history of Troy town /$cArthur T. Quiller Couch ; introd. by Basil Willey 260 $aLondon :$bDent,$c1963 300 $aXVI, 272 p. ;$c18 cm 440 0$aEverymans library 700 1 $aWilley, Basil 907 $a.b12711858$b02-04-14$c31-03-04 912 $a991001059159707536 945 $aLE005 MF 26 A 4$g1$iLE005MF-4126$lle005$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i1323528x$z31-03-04 996 $aAstonishing history of Troy town$9270224 997 $aUNISALENTO 998 $ale005$b31-03-04$cm$da $e-$feng$guik$h4$i1 LEADER 02281nas 2200709-a 450 001 996216321103316 005 20230516213020.0 011 $a1365-2990 035 $a(OCoLC)45219601 035 $a(CKB)954925513475 035 $a(CONSER)---00242279- 035 $a(DE-599)ZDB2008293-9 035 $a(EXLCZ)99954925513475 100 $a20001024a19759999 s-- - 101 0 $aeng 135 $aurun||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNeuropathology and applied neurobiology 210 $a[Oxford, England] $cBlackwell Science 215 $a1 online resource 300 $aRefereed/Peer-reviewed 300 $aJournal of the British Neuropathological Society. 311 $a0305-1846 531 $aNEUROPATHOL APPL NEUROBIOL 531 $aNEUROPATH APPL NEURO 531 $aNEUROP AP N 531 $aNEUROPATHOLOGY & APPLIED NEUROBIOLOGY 531 $aNEUROPATHOL. APPL. NEUROBIOL 531 1 $aNeuropathol. appl. neurobiol. 606 $aNervous system$xDiseases$xPathology$vPeriodicals 606 $aNervous system$xDiseases$vPeriodicals 606 $aNervous System$xpathology 606 $aNeurology 606 $aNervous system$xDiseases$2fast$3(OCoLC)fst01036098 606 $aNeuropathologie$2gtt 606 $aNeuropédagogie$2rasuqam 606 $aSystème nerveux$2rasuqam 606 $aMaladie neurologique$2rasuqam 606 $aMuscle$2rasuqam 608 $aPeriodical 608 $aPeriodicals.$2fast 608 $aPeriodicals.$2lcgft 608 $aRessource Internet (Descripteur de forme)$2rasuqam 608 $aPériodique électronique (Descripteur de forme)$2rasuqam 615 0$aNervous system$xDiseases$xPathology 615 0$aNervous system$xDiseases 615 2$aNervous System$xpathology 615 2$aNeurology 615 7$aNervous system$xDiseases. 615 17$aNeuropathologie. 615 7$aNeuropédagogie. 615 7$aSystème nerveux. 615 7$aMaladie neurologique. 615 7$aMuscle. 676 $a612.8 712 02$aBritish Neuropathological Society, 906 $aJOURNAL 912 $a996216321103316 996 $aNeuropathology and applied neurobiology$92227292 997 $aUNISA LEADER 04208nam 22007335 450 001 9910908380403321 005 20250808090300.0 010 $a9783031570964$b(electronic bk.) 010 $z9783031570957 024 7 $a10.1007/978-3-031-57096-4 035 $a(MiAaPQ)EBC31784461 035 $a(Au-PeEL)EBL31784461 035 $a(CKB)36590111600041 035 $a(DE-He213)978-3-031-57096-4 035 $a(EXLCZ)9936590111600041 100 $a20241116d2024 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aTwo-dimensional Self and Product Cubic Systems, Vol. I $eSelf-linear and Crossing-quadratic Product Vector Field /$fby Albert C. J. Luo 205 $a1st ed. 2024. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2024. 215 $a1 online resource (239 pages) 311 08$aPrint version: Luo, Albert C. J. Two-Dimensional Self and Product Cubic Systems, Vol. I Cham : Springer,c2024 9783031570957 327 $aCrossing and Product cubic Systems -- Double-inflection Saddles and Parabola-saddles -- Three Parabola-saddle Series and Switching Dynamics -- Parabola-saddles, (1:1) and (1:3)-Saddles and Centers -- Equilibrium Networks and Switching with Hyperbolic Flows. 330 $aBack cover Materials Albert C J Luo Two-dimensional Self and Product Cubic Systems, Vol. I Self-linear and crossing-quadratic product vector field This book is the twelfth of 15 related monographs on Cubic Systems, discusses self and product cubic systems with a self-linear and crossing-quadratic product vector field. Equilibrium series with flow singularity are presented and the corresponding switching bifurcations are discussed. The volume explains how the equilibrium series with connected hyperbolic and hyperbolic-secant flows exist in such cubic systems, and that the corresponding switching bifurcations are obtained through the inflection-source and sink infinite-equilibriums. Finally, the author illustrates how, in such cubic systems, the appearing bifurcations include saddle-source (sink) for equilibriums and inflection-source and sink flows for the connected hyperbolic flows, and the third-order saddle, sink and source are the appearing and switching bifurcations for saddle-source (sink) with saddles, source and sink, and also for saddle, sink and source. · Develops a theory of self and product cubic systems with a self-linear and crossing-quadratic product vector field; · Presents equilibrium series with flow singularity and connected hyperbolic and hyperbolic-secant flows; · Shows equilibrium series switching bifurcations through a range of sources and saddles on the infinite-equilibriums. 606 $aDynamics 606 $aNonlinear theories 606 $aEngineering mathematics 606 $aEngineering$xData processing 606 $aAlgebra, Universal 606 $aMultibody systems 606 $aVibration 606 $aMechanics, Applied 606 $aPlasma waves 606 $aApplied Dynamical Systems 606 $aMathematical and Computational Engineering Applications 606 $aGeneral Algebraic Systems 606 $aMultibody Systems and Mechanical Vibrations 606 $aWaves, instabilities and nonlinear plasma dynamics 615 0$aDynamics. 615 0$aNonlinear theories. 615 0$aEngineering mathematics. 615 0$aEngineering$xData processing. 615 0$aAlgebra, Universal. 615 0$aMultibody systems. 615 0$aVibration. 615 0$aMechanics, Applied. 615 0$aPlasma waves. 615 14$aApplied Dynamical Systems. 615 24$aMathematical and Computational Engineering Applications. 615 24$aGeneral Algebraic Systems. 615 24$aMultibody Systems and Mechanical Vibrations. 615 24$aWaves, instabilities and nonlinear plasma dynamics. 676 $a515.39 700 $aLuo$b Albert C. J$0720985 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910908380403321 996 $aTwo-Dimensional Self and Product Cubic Systems, Vol. I$94291102 997 $aUNINA