LEADER 01019nam a2200253 i 4500 001 991003561119707536 008 180423s1963 it | ||| | ita d 035 $ab14351985-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Fisica$beng 082 0 $a512.86 084 $aLC QA385 100 1 $aEsteve, A.$0785667 245 10$aLezioni sulla teoria dei gruppi /$cA. Esteve 260 $aMilano :$bViscontea,$c1963 300 $a141 p. ;$c29 cm 500 $aAt head of title: Università degli Studi di Milano. Scuola di perfezionamento in Fisica atomica e nucleare 650 4$aContinuous groups 650 4$aTransformations (Mathematics) 907 $a.b14351985$b22-10-18$c22-10-18 912 $a991003561119707536 945 $aLE006 Fondo soliani 167$cEx libris Giulio Soliani$g1$i2006000181037$lle006$og$pE10.00$q-$rn$s- $t1$u0$v0$w0$x0$y.i15864984$z22-10-18 996 $aLezioni sulla teoria dei gruppi$91749170 997 $aUNISALENTO 998 $ale006$b23-04-18$cm$da $e-$fita$git $h0$i0 LEADER 03726nam 22006375 450 001 9910906292803321 005 20250212080801.0 010 $a9783031571121$b(electronic bk.) 010 $z9783031571114 024 7 $a10.1007/978-3-031-57112-1 035 $a(MiAaPQ)EBC31758477 035 $a(Au-PeEL)EBL31758477 035 $a(CKB)36516668000041 035 $a(DE-He213)978-3-031-57112-1 035 $a(EXLCZ)9936516668000041 100 $a20241108d2024 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aTwo-dimensional Self-independent Variable Cubic Nonlinear Systems /$fby Albert C. J. Luo 205 $a1st ed. 2024. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2024. 215 $a1 online resource (282 pages) 311 08$aPrint version: Luo, Albert C. J. Two-Dimensional Self-independent Variable Cubic Nonlinear Systems Cham : Springer,c2025 9783031571114 327 $aConstant and Self-Cubic Vector fields -- Self-linear and Self-cubic vector fields -- Self-quadratic and self-cubic vector fields -- Two self-cubic vector fields. 330 $aThis book is the third of 15 related monographs, presents systematically a theory of self-cubic nonlinear systems. Here, at least one vector field is self-cubic, the other vector fields can be constant, self-linear, self-quadratic, and self-cubic. For constant vector fields in this book, the dynamical systems possess 1-dimensional flows, such as source, sink and saddle flows, plus third-order source and sink flows. For self-linear and self-cubic systems, the dynamical systems possess source, sink, and saddle equilibriums, saddle-source and saddle-sink equilibriums, third-order source and sink (i.e., ( 3rdSO:SO)-source, ( 3rdSI:SI)-sink) and third-order saddle (i.e., (3rdSO:SI)-saddle, 3rdSI:SO)-saddle). For self-quadratic and self-cubic systems, in addition to the first and third-order source, sink, saddles plus saddle-source, saddle-sink, there are (3,2)-saddle-sink, (3,2)-saddle-source and double-saddles, and for the two self-cubic systems, double third-order source, sink and saddles exist. Finally, the authors describes thar the homoclinic orbits without cen-ters can be formed, and the corresponding homoclinic networks of source, sink and saddles exist. ? Develops equilibrium singularity and bifurcations in 2-dimensional self-cubic systems; ? Presents (1,3) and (3,3)-sink, source, and saddles; (1,2) and (3,2)-saddle-sink and saddle-source; (2,2)-double-saddles; ? Develops homoclinic networks of source, sink and saddles. . 606 $aPlasma waves 606 $aDynamics 606 $aNonlinear theories 606 $aMechanics, Applied 606 $aMultibody systems 606 $aVibration 606 $aWaves, instabilities and nonlinear plasma dynamics 606 $aApplied Dynamical Systems 606 $aEngineering Mechanics 606 $aMultibody Systems and Mechanical Vibrations 615 0$aPlasma waves. 615 0$aDynamics. 615 0$aNonlinear theories. 615 0$aMechanics, Applied. 615 0$aMultibody systems. 615 0$aVibration. 615 14$aWaves, instabilities and nonlinear plasma dynamics. 615 24$aApplied Dynamical Systems. 615 24$aEngineering Mechanics. 615 24$aMultibody Systems and Mechanical Vibrations. 676 $a530.44 700 $aLuo$b Albert C. J$0720985 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910906292803321 996 $aTwo-dimensional Self-independent Variable Cubic Nonlinear Systems$94294983 997 $aUNINA