LEADER 01554nam2 22003133i 450 001 SUN0085932 005 20111104113326.700 100 $a20111104d1961 |0latc50 ba 101 $alat 102 $aDE 105 $a|||| ||||| 200 1 $aˆ1: ‰Einleitung, Text und Ubersetzung$fC. Sallustius Crispus 210 $aHeidelberg$cC. Winter$d1961 215 $a120 p.$d25 cm. 461 1$1001SUN0068569$12001 $aInvektive und Episteln$fC. Sallustius Crispus$gherausgegeben, übersetz und kommentiert von Karl Vretska$v1$1210 $aHeidelberg$cWinter$1215 $av.$d25 cm. 620 $aDE$dHeidelberg$3SUNL000282 700 1$aSallustius Crispus$b, Gaius$3SUNV029351$0154956 712 $aWinter$3SUNV002199$4650 790 0$aSallustius <86-ca. 35 a.C.>$zSallustius Crispus, Gaius$3SUNV089460 790 0$aSallustio <86-ca. 35 a.C.>$zSallustius Crispus, Gaius$3SUNV089461 790 0$aSallustius Crispus, Caius$zSallustius Crispus, Gaius$3SUNV089462 790 1$aSallustio Crispo, Gaio$zSallustius Crispus, Gaius$3SUNV047205 790 1$aSallustio Crispo, Caio$zSallustius Crispus, Gaius$3SUNV047206 801 $aIT$bSOL$c20181109$gRICA 912 $aSUN0085932 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI LETTERE E BENI CULTURALI$d07 CONS Xe 5 Sal $e07 DP 517 995 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI LETTERE E BENI CULTURALI$bIT-CE0103$gDP$h517$kCONS Xe 5 Sal$oc$qa 996 $aEinleitung, Text und Ubersetzung$91435111 997 $aUNICAMPANIA LEADER 03347nam 22004935 450 001 9910906196703321 005 20250807152921.0 010 $a9783031716607 010 $a3031716604 024 7 $a10.1007/978-3-031-71660-7 035 $a(CKB)36549437100041 035 $a(MiAaPQ)EBC31776825 035 $a(Au-PeEL)EBL31776825 035 $a(DE-He213)978-3-031-71660-7 035 $a(EXLCZ)9936549437100041 100 $a20241112d2024 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe Forcing Method in Set Theory $eAn Introduction via Boolean Valued Logic /$fby Matteo Viale 205 $a1st ed. 2024. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2024. 215 $a1 online resource (246 pages) 225 1 $aLa Matematica per il 3+2,$x2038-5757 ;$v168 311 08$a9783031716591 311 08$a3031716590 327 $a- 1. Introduction -- 2. Preliminaries: Preorders, Topologies, Axiomatizations of Set Theory -- 3. Boolean Algebras -- 4. Complete Boolean Algebras -- 5. More on Preorders -- 6. Boolean Valued Models -- 7. Forcing. 330 $aThe main aim of this book is to provide a compact self-contained presentation of the forcing technique devised by Cohen to establish the independence of the continuum hypothesis from the axioms of set theory. The book follows the approach to the forcing technique via Boolean valued semantics independently introduced by Vopenka and Scott/Solovay; it develops out of notes I prepared for several master courses on this and related topics and aims to provide an alternative (and more compact) account of this topic with respect to the available classical textbooks. The aim of the book is to take up a reader with familiarity with logic and set theory at the level of an undergraduate course on both topics (e.g., familiar with most of the content of introductory books on first-order logic and set theory) and bring her/him to page with the use of the forcing method to produce independence (or undecidability results) in mathematics. Familiarity of the reader with general topology would also be quite helpful; however, the book provides a compact account of all the needed results on this matter. Furthermore, the book is organized in such a way that many of its parts can also be read by scholars with almost no familiarity with first-order logic and/or set theory. The book presents the forcing method outlining, in many situations, the intersections of set theory and logic with other mathematical domains. My hope is that this book can be appreciated by scholars in set theory and by readers with a mindset oriented towards areas of mathematics other than logic and a keen interest in the foundations of mathematics. 410 0$aLa Matematica per il 3+2,$x2038-5757 ;$v168 606 $aLogic, Symbolic and mathematical 606 $aMathematical Logic and Foundations 615 0$aLogic, Symbolic and mathematical. 615 14$aMathematical Logic and Foundations. 676 $a511.3 700 $aViale$b Matteo$0324101 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910906196703321 996 $aThe Forcing Method in Set Theory$94290128 997 $aUNINA