LEADER 03716nam 22005895 450 001 9910906194203321 005 20241107115744.0 010 $a9783031703263 010 $a303170326X 024 7 $a10.1007/978-3-031-70326-3 035 $a(MiAaPQ)EBC31756487 035 $a(Au-PeEL)EBL31756487 035 $a(CKB)36514558400041 035 $a(DE-He213)978-3-031-70326-3 035 $a(EXLCZ)9936514558400041 100 $a20241107d2024 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMultidimensional Differential and Integral Calculus $eA Practical Approach /$fby Giorgio Riccardi, Bruno Antonio Cifra, Enrico De Bernardis 205 $a1st ed. 2024. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2024. 215 $a1 online resource (273 pages) 311 08$a9783031703256 311 08$a3031703251 327 $aChapter 1. Basic concepts and parametrisation of curves -- Chapter 2. Differential and geometric properties of curves -- Chapter 3. Curves in space: the Frenet frame -- Chapter 4. Functions of a vector variable -- Chapter 5. Continuity and differentiability of functions of a vector variable -- Chapter 6. Partial derivatives -- Chapter 7. Sequences of functions -- Chapter 8. Series of functions -- Chapter 9. Taylor series for functions of several variables -- Chapter 10. Applications of the Taylor series -- Chapter 11. Integration of functions of two variables -- Chapter 12. Samples of two-dimensional integration and change of variables -- Chapter 13. Two-dimensional integration and area of a surface -- Chapter 14. Vector functions of vector variables -- Chapter 15. Line integral and flux of vector functions -- Chapter 16. Triple integrals and coordinate changes -- Chapter 17. Green?s formulae for the integral calculus.-Chapter 18. Application of Green?s formulae -- Chapter 19. Gauss and Stokes theorems -- Chapter 20. Partial differential equations -- Etc... 330 $aThis textbook proposes an informal access to the most important issues of multidimensional differential and integral calculus. The traditional style?characterized by listing definitions, theorems, and proofs?is replaced by a conversational approach, primarily oriented to applications. The topics covered, developing along the usual path of a textbook for undergraduate courses, are always introduced by thoroughly carried out examples. This drives the reader in building the capacity of properly use the theoretical tools to model and solve practical problems. To situate the contents within a historical perspective, the book is accompanied by a number of links to the biographies of all scientists mentioned as leading actors in the development of the theory. 606 $aDifferential equations 606 $aEngineering mathematics 606 $aMathematical analysis 606 $aDifferential Equations 606 $aEngineering Mathematics 606 $aIntegral Transforms and Operational Calculus 615 0$aDifferential equations. 615 0$aEngineering mathematics. 615 0$aMathematical analysis. 615 14$aDifferential Equations. 615 24$aEngineering Mathematics. 615 24$aIntegral Transforms and Operational Calculus. 676 $a515.35 700 $aRiccardi$b Giorgio$0614395 701 $aCifra$b Bruno Antonio$01775479 701 $aDe Bernardis$b Enrico$01775480 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910906194203321 996 $aMultidimensional Differential and Integral Calculus$94290105 997 $aUNINA