LEADER 03596nam 22007335 450 001 9910903790203321 005 20250808090419.0 010 $a3-031-57104-5 024 7 $a10.1007/978-3-031-57104-6 035 $a(CKB)36443041300041 035 $a(MiAaPQ)EBC31747165 035 $a(Au-PeEL)EBL31747165 035 $a(DE-He213)978-3-031-57104-6 035 $a(EXLCZ)9936443041300041 100 $a20241031d2024 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aTwo-dimensional Product-Cubic Systems, Vol. IV $eCrossing-quadratic Vector Fields /$fby Albert C. J. Luo 205 $a1st ed. 2024. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2024. 215 $a1 online resource (262 pages) 311 08$a3-031-57103-7 327 $aPreface -- Crossing-quadratic and product-cubic systems -- Double-inflection-saddles and bifurcation dynamics -- Parabola-saddles and bifurcation. 330 $aThis book, the eighth of 15 related monographs, discusses a product-cubic dynamical system possessing a product-cubic vector field and a crossing-univariate quadratic vector field. It presents equilibrium singularity and bifurcation dynamics, and . the saddle-source (sink) examined is the appearing bifurcations for saddle and source (sink). The double-inflection saddle equilibriums are the appearing bifurcations of the saddle and center, and also the appearing bifurcations of the network of saddles and centers. The infinite-equilibriums for the switching bifurcations featured in this volume include: Parabola-source (sink) infinite-equilibriums, Inflection-source (sink) infinite-equilibriums, Hyperbolic (circular) sink-to source infinite-equilibriums, Hyperbolic (circular) lower-to-upper saddle infinite-equilibriums. Develops a theory of cubic dynamical systems having a product-cubic vector field and a crossing-quadratic vector field; Shows equilibriums and paralleled hyperbolic and hyperbolic-secant flows with switching though infinite-equilibriums; Presents CCW and CW centers separated by a paralleled hyperbolic flow and positive and negative saddles. . 606 $aDynamics 606 $aNonlinear theories 606 $aDynamics 606 $aMultibody systems 606 $aVibration 606 $aMechanics, Applied 606 $aEngineering mathematics 606 $aEngineering$xData processing 606 $aAlgebra, Universal 606 $aApplied Dynamical Systems 606 $aDynamical Systems 606 $aMultibody Systems and Mechanical Vibrations 606 $aMathematical and Computational Engineering Applications 606 $aGeneral Algebraic Systems 615 0$aDynamics. 615 0$aNonlinear theories. 615 0$aDynamics. 615 0$aMultibody systems. 615 0$aVibration. 615 0$aMechanics, Applied. 615 0$aEngineering mathematics. 615 0$aEngineering$xData processing. 615 0$aAlgebra, Universal. 615 14$aApplied Dynamical Systems. 615 24$aDynamical Systems. 615 24$aMultibody Systems and Mechanical Vibrations. 615 24$aMathematical and Computational Engineering Applications. 615 24$aGeneral Algebraic Systems. 676 $a515.39 700 $aLuo$b Albert C. J$0720985 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910903790203321 996 $aTwo-dimensional Product-Cubic Systems, Vol. IV$94273152 997 $aUNINA