LEADER 03266nam 22006495 450 001 9910897980203321 005 20250807152849.0 010 $a3-031-48483-5 024 7 $a10.1007/978-3-031-48483-4 035 $a(CKB)36383232500041 035 $a(MiAaPQ)EBC31735074 035 $a(Au-PeEL)EBL31735074 035 $a(DE-He213)978-3-031-48483-4 035 $a(EXLCZ)9936383232500041 100 $a20241021d2024 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aTwo-dimensional Product Cubic Systems, Vol. VII $eSelf- Quadratic Vector Fields /$fby Albert C. J. Luo 205 $a1st ed. 2024. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2024. 215 $a1 online resource (240 pages) 300 $aIncludes index. 311 08$a3-031-48482-7 327 $aChapter 1: Self-quadratic and product-cubic Systems -- Chapter 2: Saddle-node singularity and bifurcation dynamics -- Chapter 3: Double-saddles and switching bifurcations. 330 $aThis book, the seventh of 15 related monographs, concerns nonlinear dynamics and singularity of cubic dynamical systems possessing a product-cubic vector field and a self-univariate quadratic vector field. The equilibrium singularity and bifurcation dynamics are discussed. The saddle-source (sink) is the appearing bifurcations for saddle and source (sink). The double-saddle equilibriums are the appearing bifurcations of the saddle-source and saddle-sink, and also the appearing bifurcations of the network of saddles, sink and source. The infinite-equilibriums for the switching bifurcations include: ? inflection-saddle infinite-equilibriums, ? hyperbolic-source (sink) infinite-equilibriums, ? up-down (down-up) saddle infinite-equilibriums, ? inflection-source (sink) infinite-equilibriums. Develops a theory of cubic dynamical systems possessing a product-cubic vector field and a self-quadratic vector field; Finds series/networks of equilibriums, 1-dimenional hyperbolic/hyperbolic-secant flows, finite-equilibrium switching; Presents sink and source separated by a connected hyperbolic-secant flow, and the (SO,SI) and (SI,SO)-saddles. . 606 $aMultibody systems 606 $aVibration 606 $aMechanics, Applied 606 $aDynamics 606 $aNonlinear theories 606 $aStochastic analysis 606 $aMultibody Systems and Mechanical Vibrations 606 $aApplied Dynamical Systems 606 $aEngineering Mechanics 606 $aStochastic Analysis 615 0$aMultibody systems. 615 0$aVibration. 615 0$aMechanics, Applied. 615 0$aDynamics. 615 0$aNonlinear theories. 615 0$aStochastic analysis. 615 14$aMultibody Systems and Mechanical Vibrations. 615 24$aApplied Dynamical Systems. 615 24$aEngineering Mechanics. 615 24$aStochastic Analysis. 676 $a512.82 700 $aLuo$b Albert C. J.$0720985 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910897980203321 996 $aTwo-Dimensional Product Cubic Systems, Vol. VII$94211508 997 $aUNINA