LEADER 01748nam 2200397z- 450 001 9910346942403321 005 20210212 010 $a1000006483 035 $a(CKB)4920000000101098 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/57100 035 $a(oapen)doab57100 035 $a(EXLCZ)994920000000101098 100 $a20202102d2007 |y 0 101 0 $ager 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aProduktion und Charakterisierung biogener anorganischer, nanoskaliger und nanostrukturierter Partikel 210 $cKIT Scientific Publishing$d2007 215 $a1 online resource (IX, 144 p. p.) 311 08$a3-86644-118-5 330 $aDie industrielle Herstellung anorganischer nanoskaliger und nanostrukturierter Partikel erfolgt vorwiegend durch den Einsatz physikalischer und chemischer Verfahren. Im Rahmen dieser Arbeit wird gezeigt, dass durch Verwendung sog. Biomineralisationsprozesse eine relativ große Anzahl qualitativ hochwertiger Partikel zu wirtschaftlich interessanten Konditionen herstellbar ist. Im Vgl. zu Partikeln aus physikalischchemischen Verfahren besitzen biogene Partikel weitere interessante Eigenschaften. 606 $aBiotechnology$2bicssc 610 $aBiomimetik 610 $aBiomineralisation 610 $aBioverfahrenstechnik 610 $aHalbleiter 610 $aNanotechnologie 610 $aPartikel 615 7$aBiotechnology 700 $aOder$b Stephanie$4auth$01279659 906 $aBOOK 912 $a9910346942403321 996 $aProduktion und Charakterisierung biogener anorganischer, nanoskaliger und nanostrukturierter Partikel$93015799 997 $aUNINA LEADER 04408nam 22006615 450 001 9910896530603321 005 20250807153307.0 010 $a3-031-70200-X 024 7 $a10.1007/978-3-031-70200-6 035 $a(CKB)36357447700041 035 $a(MiAaPQ)EBC31726895 035 $a(Au-PeEL)EBL31726895 035 $a(DE-He213)978-3-031-70200-6 035 $a(EXLCZ)9936357447700041 100 $a20241014d2024 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aIntroduction to Topological Defects and Solitons $eIn Liquid Crystals, Magnets, and Related Materials /$fby Jonathan V. Selinger 205 $a1st ed. 2024. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2024. 215 $a1 online resource (216 pages) 225 1 $aLecture Notes in Physics,$x1616-6361 ;$v1032 311 08$a3-031-70199-2 327 $aChapter 1. Introduction to Defects -- Chapter 2. Introduction to Solitons -- Chapter 3. Free Energy -- Chapter 4. Dynamics and Statistical Mechanics -- Chapter 5. Prequel to Defects: Variable Magnitude of Order -- Chapter 6. Further Issues: Defect Phase/Orientation, Charge Density, Curvature -- Chapter 7. 2D Nematic Order, Active Liquid Crystals -- Chapter 8. 3D Polar or Nematic Order -- Chapter 9. Defects in Crystals -- Chapter 10. 2D Measuring Surface: Hedgehogs, Skyrmions -- Chapter 11. 3D Measuring Surface: Hopfions -- Chapter 12. Phases With Regular Arrays of Defects or Solitons. 330 $aThis textbook introduces topological defects and solitons at a level suitable for advanced undergraduates and beginning graduate students in physics and materials science. It avoids the formal mathematics of topology, and instead concentrates on the physical properties of these topological structures. The first half of the book concentrates on fundamental principles of defects and solitons, and illustrates these principles with a single example?the xy model for 2D magnetic order. It begins by defining the concept of a winding number, and uses this concept to describe the topology of defects (vortices or disclinations) and solitons (domain walls), carefully identifying the similarities and differences between these two types of topological structures. It then goes on to discuss physical properties of defects and solitons, including free energy, dynamics, statistical mechanics, and coupling with curvature. It shows how these concepts emerge from a theory with variable magnitude of order, and hence how topology can be viewed as an approximation to physics. The second half goes on to explore a wider range of topological defects and solitons. First, it considers more complex types of order?2D nematic liquid crystals, 3D magnetic or liquid-crystal order, 2D or 3D crystalline solids?and shows how each type of order leads to specific topological structures. Next, it discusses defects and solitons that are characterized by 2D or 3D measuring surfaces, not just 1D loops, including hedgehogs, skyrmions, and hopfions. These structures are more complex, but they can still be understood using the same fundamental principles. A final chapter describes the formation of phases with regular arrays of defects or solitons. 410 0$aLecture Notes in Physics,$x1616-6361 ;$v1032 606 $aCondensed matter 606 $aSoft condensed matter 606 $aMathematical physics 606 $aDifferential equations 606 $aCondensed Matter Physics 606 $aCondensed Matter 606 $aSoft Materials 606 $aMathematical Methods in Physics 606 $aMathematical Physics 606 $aDifferential Equations 615 0$aCondensed matter. 615 0$aSoft condensed matter. 615 0$aMathematical physics. 615 0$aDifferential equations. 615 14$aCondensed Matter Physics. 615 24$aCondensed Matter. 615 24$aSoft Materials. 615 24$aMathematical Methods in Physics. 615 24$aMathematical Physics. 615 24$aDifferential Equations. 676 $a530.124 700 $aSelinger$b Jonathan V.$0805250 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910896530603321 996 $aIntroduction to Topological Defects and Solitons$94211899 997 $aUNINA