LEADER 05264nam 2200721 450 001 9910460154503321 005 20220208183156.0 010 $a0-8135-6484-0 024 7 $a10.36019/9780813564845 035 $a(CKB)3710000000376797 035 $a(EBL)3032159 035 $a(SSID)ssj0001457861 035 $a(PQKBManifestationID)11883825 035 $a(PQKBTitleCode)TC0001457861 035 $a(PQKBWorkID)11443873 035 $a(PQKB)10636712 035 $a(MiAaPQ)EBC3032159 035 $a(OCoLC)905349655 035 $a(MdBmJHUP)muse45495 035 $a(DE-B1597)526050 035 $a(DE-B1597)9780813564845 035 $a(Au-PeEL)EBL3032159 035 $a(CaPaEBR)ebr11033582 035 $a(CaONFJC)MIL209424 035 $a(EXLCZ)993710000000376797 100 $a20150330h20152015 uy 0 101 0 $aeng 135 $aur|||||||nn|n 181 $ctxt 182 $cc 183 $acr 200 10$aShades of white flight $eevangelical congregations and urban departure /$fMark T. Mulder 210 1$aNew Brunswick, New Jersey :$cRutgers University Press,$d2015. 210 4$d©2015 215 $a1 online resource (198 p.) 300 $aDescription based upon print version of record. 311 $a0-8135-6483-2 320 $aIncludes bibliographical references and index. 327 $tFront matter --$tCONTENTS --$tList of Maps --$tPreface and Acknowledgments --$t1. Introduction: The Irony of Religion and Racial Segregation --$tPart I: The Evolution of an Evangelical Denomination --$t2. Mobility and Insularity --$t3. Shuttered in Chicago --$t4. A Case Study of the Closed Community: The Disrupted Integration of Timothy Christian School --$tPart II: City and Neighborhood Change --$t5. Chicago: A Brief History of African American In-Migration and White Reaction --$t6. The Black Belt Reaches Englewood and Roseland --$tPart III: Congregations Respond to Neighborhood Change --$t7. The Insignificance of Place --$t8. The Significance of Polity --$t9. Second Roseland (CRC) Leaves the City --$t10. The Contrast between Sister Denominations --$t11. Conclusion: The Continuing Resonance of Religion in Race and Urban Patterns --$tNotes --$tBibliography --$tIndex --$tABOUT THE AUTHOR 330 $aSince World War II, historians have analyzed a phenomenon of "white flight" plaguing the urban areas of the northern United States. One of the most interesting cases of "white flight" occurred in the Chicago neighborhoods of Englewood and Roseland, where seven entire church congregations from one denomination, the Christian Reformed Church, left the city in the 1960's and 1970's and relocated their churches to nearby suburbs. In Shades of White Flight, sociologist Mark T. Mulder investigates the migration of these Chicago church members, revealing how these churches not only failed to inhibit white flight, but actually facilitated the congregations' departure. Using a wealth of both archival and interview data, Mulder sheds light on the forces that shaped these midwestern neighborhoods and shows that, surprisingly, evangelical religion fostered both segregation as well as the decline of urban stability. Indeed, the Roseland and Englewood stories show how religion-often used to foster community and social connectedness-can sometimes help to disintegrate neighborhoods. Mulder describes how the Dutch CRC formed an insular social circle that focused on the local church and Christian school-instead of the local park or square or market-as the center point of the community. Rather than embrace the larger community, the CRC subculture sheltered themselves and their families within these two places. Thus it became relatively easy-when black families moved into the neighborhood-to sell the church and school and relocate in the suburbs. This is especially true because, in these congregations, authority rested at the local church level and in fact they owned the buildings themselves. Revealing how a dominant form of evangelical church polity-congregationalism-functioned within the larger phenomenon of white flight, Shades of White Flight lends new insights into the role of religion and how it can affect social change, not always for the better. 606 $aEvangelicalism$zUnited States$xHistory$y20th century 606 $aRace$xReligious aspects$xChristianity 606 $aIdentification (Religion) 606 $aRacism$zUnited States$xHistory$y20th century 606 $aAfrican Americans$zIllinois$zChicago$xHistory$y20th century$vCase studies 606 $aWhite people$zIllinois$zChicago$xMigrations$xHistory$y20th century$vCase studies 607 $aUnited States$xRace relations$xHistory$y20th century 608 $aElectronic books. 615 0$aEvangelicalism$xHistory 615 0$aRace$xReligious aspects$xChristianity. 615 0$aIdentification (Religion) 615 0$aRacism$xHistory 615 0$aAfrican Americans$xHistory 615 0$aWhite people$xMigrations$xHistory 676 $a305.80097309/04 700 $aMulder$b Mark T.$f1973-$01035078 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910460154503321 996 $aShades of white flight$92454587 997 $aUNINA LEADER 05939nam 2200805 a 450 001 9910818175103321 005 20240313183545.0 010 $a9781118604083 010 $a1118604083 010 $a9781118604045 010 $a1118604040 010 $a9781299402447 010 $a1299402445 010 $a9781118604328 010 $a1118604326 035 $a(CKB)2550000001017884 035 $a(EBL)1157400 035 $a(SSID)ssj0000884297 035 $a(PQKBManifestationID)11475941 035 $a(PQKBTitleCode)TC0000884297 035 $a(PQKBWorkID)10940578 035 $a(PQKB)11747338 035 $a(Au-PeEL)EBL1157400 035 $a(CaPaEBR)ebr10677258 035 $a(CaONFJC)MIL471494 035 $a(OCoLC)831115115 035 $a(MiAaPQ)EBC1157400 035 $a(PPN)183762401 035 $a(Perlego)999766 035 $a(EXLCZ)992550000001017884 100 $a20130403d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNon-smooth deterministic or stochastic discrete dynamical systems $eapplications to models with friction or impact /$fJe?ro?me Bastien, Fre?de?ric Bernardin, Claude-Henri Lamarque 205 $a1st ed. 210 $aLondon $cISTE ;$aHoboken, N.J. $cWiley$d2013 215 $a1 online resource (514 p.) 225 0 $aMechanical engineering and solid mechanics series 300 $aDescription based upon print version of record. 311 08$a9781848215252 311 08$a1848215258 320 $aIncludes bibliographical references and index. 327 $aTitle Page; Contents; Introduction; Chapter 1. Some Simple Examples; 1.1. Introduction; 1.2. Frictions; 1.2.1. Coulomb's law; 1.2.2. Differential equation with univalued operator and usual sign; 1.2.3. Differential equation with multivalued term: differential inclusion; 1.2.4. Other friction laws; 1.3. Impact; 1.3.1. Difficulties with writing the differential equation; 1.3.2. Ill-posed problems; 1.4. Probabilistic context; Chapter 2. Theoretical Deterministic Context; 2.1. Introduction; 2.2. Maximal monotone operators and first result on differential inclusions (in R) 327 $a2.2.1. Graphs (operators) definitions2.2.2. Maximal monotone operators; 2.2.3. Convex function, sub-differentials and operators; 2.2.4. Resolvent and regularization; 2.2.5. Taking the limit; 2.2.6. First result of existence and uniqueness for a differential inclusion; 2.3. Extension to any Hilbert space; 2.4. Existence and uniqueness results in Hilbert space; 2.5. Numerical scheme in a Hilbert space; 2.5.1. The numerical scheme; 2.5.2. State of the art summary and results shown in this publication; 2.5.3. Convergence (general results and order 1/2); 2.5.4. Convergence (order one) 327 $a2.5.5. Change of scalar product2.5.6. Resolvent calculation; 2.5.7. More regular schemes; Chapter 3. Stochastic Theoretical Context; 3.1. Introduction; 3.2. Stochastic integral; 3.2.1. The stochastic processes background; 3.2.2. Stochastic integral; 3.3. Stochastic differential equations; 3.3.1. Existence and uniqueness of strong solution; 3.3.2. Existence and uniqueness of weak solution; 3.3.3. Kolmogorov and Fokker-Planck equations; 3.4. Multivalued stochastic differential equations; 3.4.1. Problem statement; 3.4.2. Uniqueness and existence results; 3.5. Numerical scheme 327 $a3.5.1. Which convergence: weak or strong?3.5.2. Strong convergence results; 3.5.3. Weak convergence results; Chapter 4. Riemannian Theoretical Context; 4.1. Introduction; 4.2. First or second order; 4.3. Differential geometry; 4.3.1. Sphere case; 4.3.2. General case; 4.4. Dynamics of the mechanical systems; 4.4.1. Definition of mechanical system; 4.4.2. Equation of the dynamics; 4.5. Connection, covariant derivative, geodesics and parallel transport; 4.6. Maximal monotone term; 4.7. Stochastic term; 4.8. Results on the existence and uniqueness of a solution; Chapter 5. Systems with Friction 327 $a5.1. Introduction5.2. Examples of frictional systems with a finite number of degrees of freedom; 5.2.1. General framework; 5.2.2. Two elementary models; 5.2.3. Assembly and results in finite dimensions; 5.2.4. Conclusion; 5.2.5. Examples of numerical simulation; 5.2.6. Identification of the generalized Prandtl model (principles and simulation); 5.3. Another example: the case of a pendulum with friction; 5.3.1. Formulation of the problem, existence and uniqueness; 5.3.2. Numerical scheme; 5.3.3. Numerical estimation of the order; 5.3.4. Example of numerical simulations 327 $a5.3.5. Free oscillations 330 $a This book contains theoretical and application-oriented methods to treat models of dynamical systems involving non-smooth nonlinearities.The theoretical approach that has been retained and underlined in this work is associated with differential inclusions of mainly finite dimensional dynamical systems and the introduction of maximal monotone operators (graphs) in order to describe models of impact or friction. The authors of this book master the mathematical, numerical and modeling tools in a particular way so that they can propose all aspects of the approach, in both a deterministic 410 0$aISTE 606 $aDynamics$xMathematical models 606 $aFriction$xMathematical models 606 $aImpact$xMathematical models 615 0$aDynamics$xMathematical models. 615 0$aFriction$xMathematical models. 615 0$aImpact$xMathematical models. 676 $a620.00151539 700 $aBastien$b Je?ro?me$01698407 701 $aBernardin$b Fre?de?ric$01698408 701 $aLamarque$b Claude-Henri$0739265 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910818175103321 996 $aNon-smooth deterministic or stochastic discrete dynamical systems$94079834 997 $aUNINA LEADER 01449nas 2200469 c 450 001 9910896215103321 005 20251012104838.0 035 $a(DE-599)ZDB2837996-2 035 $a(OCoLC)927951417 035 $a(DE-101)1077935978 035 $a(CKB)5860000000280673 035 $a(EXLCZ)995860000000280673 100 $a20151023a20079999 |y | 101 0 $ager 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aHeritage at risk$h[...]$iSpecial edition$fInternational Council on Monuments and Sites in Danger 210 31$aDresden$cTUDpress$d2007- 210 31$aHeidelberg$cUniv.-Bibliothek$d2007- 215 $aOnline-Ressource 300 $aGesehen am 24.02.2023 517 1 $aHeritage at risk / Special edition 517 3 $aH at R 517 3 $aH & R 517 3 $aH and R 606 $aBaudenkmal$3(DE-588)4004973-5$3https://d-nb.info/gnd/4004973-5$3(DE-101)040049736$9rswk-swf$2gnd 606 $aGefährdung$3(DE-588)4156209-4$3https://d-nb.info/gnd/4156209-4$3(DE-101)041562097$9rswk-swf$2gnd 608 $aMonografische Reihe$2gnd-content 615 7$aBaudenkmal. 615 7$aGefährdung. 676 $a700 686 $a9,10$2ssgn 712 02$aICOMOS$4isb 801 0$b0016 801 1$bDE-101 801 2$b9999 906 $aJOURNAL 912 $a9910896215103321 996 $aHeritage at risk$92004457 997 $aUNINA