LEADER 01169nas 2200409 c 450 001 9910893546203321 005 20221214154409.0 035 $a(CKB)5280000000197724 035 $a(DE-599)ZDB2636070-6 035 $a(OCoLC)759812325 035 $a(OCoLC)864597154 035 $a(DE-101)1016809476 035 $a(EXLCZ)995280000000197724 100 $a20111104a20049999 |y | 101 0 $ager 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFachserie / Statistisches Bundesamt, Wiesbaden$h16$iVerdienste und Arbeitskosten$hReihe 2$h2$iArbeitnehmerverdienste 210 31$aWiesbaden$cStatistisches Bundesamt$d2004- 215 $aOnline-Ressource 225 0 $aDeStatis : wissen, nutzen 300 $aGesehen am 04.11.11 517 $aFachserie / 16 / 2.1 517 1 $aFachserie / 16 / 2 / 1 608 $aZeitschrift$2gnd-content 608 $aStatistik$2gnd-content 676 $a330 676 $a310 801 0$b1240 801 1$bDE-101 801 2$b9001 906 $aJOURNAL 912 $a9910893546203321 996 $aFachserie$94217557 997 $aUNINA LEADER 04849nam 2200661Ia 450 001 9911006547303321 005 20200520144314.0 010 $a9789812813695 010 $a9812813691 010 $a9781615838714 010 $a1615838716 035 $a(CKB)3360000000000356 035 $a(EBL)1223221 035 $a(SSID)ssj0000615018 035 $a(PQKBManifestationID)11387255 035 $a(PQKBTitleCode)TC0000615018 035 $a(PQKBWorkID)10606042 035 $a(PQKB)10515625 035 $a(MiAaPQ)EBC1223221 035 $a(WSP)00003539 035 $a(WaSeSS)Ind00030945 035 $a(Perlego)845881 035 $a(EXLCZ)993360000000000356 100 $a19990805d2000 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aPlates, laminates and shells $easymptotic analysis and homogenization /$fT. Lewinski, J.J. Telega 210 $aSingapore ;$aRiver Edge, N.J. $cWorld Scientific$dc2000 215 $a1 online resource (765 p.) 225 0 $aSeries on advances in mathematics for applied sciences ;$vvol. 52 300 $aDescription based upon print version of record. 311 08$a9789810232061 311 08$a9810232063 320 $aIncludes bibliographical references (p. [703]-732) and index. 327 $aContents; Preface; CHAPTER I MATHEMATICAL PRELIMINARIES; Introduction; 1. Function spaces, convex analysis, variational convergence; 1.1. Function spaces: LP and Sobolev spaces; 1.1.1. Lebesgue spaces LP; 1.1.2. Sobolev spaces and trace operators; 1.2. Elements of convex analysis and duality, minimization theorems, multivalued mappings; 1.2.1. Convex sets and functions; 1.2.2. Minimization theorems; 1.2.3. Normal integrands, integral functionals and Rockafellar's theorem; 1.2.4. Quasiconvexity and A-quasiconvexity; 1.2.5. Elements of the duality theory; 1.2.6. Set-valued maps 327 $a1.3. Variational convergence of sequences of operators and functionals1.3.1. G-convergence; 1.3.2. H-convergence and the energy method; 1.3.3. Two-scale convergence; 1.3.4. ?-convergence; 1.3.5. ?-convergence of sequence of nonconvex functionals convex in highest-order derivatives: non-uniform homogenization; 1.3.6. ?-convergence and duality; 1.3.7. Convergence of sets in Kuratowski's sense; 1.4. Two approximation results; 1.5. An augmented Lagrangian method for problems with unilateral constraints; CHAPTER II ELASTIC PLATES; Introduction 327 $a2. Three-dimensional analysis and effective models of composite plates2.1. Equilibrium problem of a periodic plate; 2.2. Family of problems (P?); 2.3. Asymptotic analysis. Effective moduli and local problems; 2.4. Case of transverse symmetry; 2.5. Centrosymmetry of the periodicity cell; 2.6. On computing effective stiffnesses; 2.7. Case of moderately thick periodicity cells; 2.8. Case of thin periodicity cells. Derivation by imposing Kirchhoff's constraints; 2.9. Case of transversely slender periodicity cells of constant thickness 327 $a3. Thin plates in bending and stretching3.1. Kirchhoff type description; 3.2. Asymptotic homogenization. In-plane scaling approach; 3.3. Refined scaling approach; 3.4. Variational formulae for effective stiffnesses; 3.5. Correctors; 3.6. Variational formulae for effective compliances. Dual effective potential; 3.7. Transversely symmetric plates periodic in one direction; 3.8. Ribbed plates. Bending problem; 3.8.1. Formula of Francfort and Murat for stiffnesses; 3.8.2. Ribbed plates of higher rank with the stronger phase taken as an envelope 327 $a3.8.3. Formula of Lurie-Cherkaev-Fedorov for stiffnesses 330 $aThis book gives a systematic and comprehensive presentation of the results concerning effective behavior of elastic and plastic plates with periodic or quasiperiodic structure. One of the chapters covers the hitherto available results concerning the averaging problems in the linear and nonlinear shell models.A unified approach to the problems studied is based on modern variational and asymptotic methods, including the methods of variational inequalities as well as homogenization techniques. Duality arguments are also exploited. A significant part of the book deals with problems important for e 410 0$aSeries on Advances in Mathematics for Applied Sciences 606 $aElastic plates and shells 606 $aHomogenization (Differential equations) 615 0$aElastic plates and shells. 615 0$aHomogenization (Differential equations) 676 $a531/.382 700 $aLewinski$b T$0755238 701 $aTelega$b Jozef Joachim$0287435 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911006547303321 996 $aPlates, laminates and shells$91521590 997 $aUNINA