LEADER 00853oas 22003253 450 001 9910893256303321 005 20250611213023.0 011 $a2573-041X 035 $a(DE-599)ZDB2902297-6 035 $a(OCoLC)986221059 035 $a(CONSER) 2017200734 035 $a(CKB)5280000000193847 035 $a(EXLCZ)995280000000193847 100 $a20170508a20179999 uy a 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aJournal of education and culture studies 210 1$aLos Angeles, CA :$cScholink Inc.,$d2017- 311 08$a2573-0401 517 1 $aJECS 676 $a370 801 0$bDLC 801 1$bDLC 906 $aJOURNAL 912 $a9910893256303321 996 $aJournal of education and culture studies$94266074 997 $aUNINA LEADER 03657nam 22005655 450 001 9910954468203321 005 20250725084836.0 010 $a3-642-57748-2 024 7 $a10.1007/978-3-642-57748-2 035 $a(CKB)3400000000104310 035 $a(SSID)ssj0000805267 035 $a(PQKBManifestationID)11504528 035 $a(PQKBTitleCode)TC0000805267 035 $a(PQKBWorkID)10842170 035 $a(PQKB)11521016 035 $a(DE-He213)978-3-642-57748-2 035 $a(MiAaPQ)EBC3089524 035 $a(EXLCZ)993400000000104310 100 $a20121227d1995 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aBasic Geometry of Voting /$fby Donald G. Saari 205 $a1st ed. 1995. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1995. 215 $a1 online resource (XII, 300 p.) 300 $a"With 102 Figures." 311 08$a3-540-60064-7 320 $aIncludes bibliographical references and index. 327 $aI. From an Election Fable to Election Procedures -- 1.1 An Electoral Fable -- 1.2 The Moral of the Tale -- 1.3 From Aristotle to ?Fast Eddie? -- 1.4 What Kind of Geometry? -- II. Geometry for Positional And Pairwise Voting -- 2.1 Ranking Regions -- 2.2 Profiles and Election Mappings -- III. The Problem With Condorcet -- 3.1 Why Can?t an Organization Be More Like a Person? -- 3.2 Geometry of Pairwise Voting -- 3.3 Black?s Single-Peakedness -- 3.4 Arrow?s Theorem -- IV. Positional Voting And the BC -- 4.1 Positional Voting Methods -- 4.2 What a Difference a Procedure Makes; Several Different Outcomes -- 4.3 Positional Versus Pairwise Voting -- 4.4 Profile Decomposition -- 4.5 From Aggregating Pairwise Votes to the Borda Count -- 4.6 The Other Positional Voting Methods -- 4.7 Multiple Voting Schemes -- 4.8 Other Election Procedures -- V. Other Voting Issues -- 5.1 Weak Consistency: The Sum of the Parts -- 5.2 From Involvement and Monotonicity to Manipulation -- 5.3 Gibbard-Satterthwaite and Manipulable Procedures -- 5.4 Proportional Representation -- 5.5 House Monotone Methods -- VI. Notes -- VII. References. 330 $aA surprise is how the complexities of voting theory can be explained and resolved with the comfortable geometry of our three-dimensional world. This book is directed toward students and others wishing to learn about voting, experts will discover previously unpublished results. As an example, a new profile decomposition quickly resolves two centuries old controversies of Condorcet and Borda, demonstrates, that the rankings of pairwise and other methods differ because they rely on different information, casts series doubt on the reliability of a Condorcet winner as a standard for the field, makes the famous Arrow`s Theorem predictable, and simplifies the construction of examples. The geometry unifies seemingly disparate topics as manipulation, monotonicity, and even the apportionment issues of the US Supreme Court. 606 $aOperations research 606 $aEconometrics 606 $aOperations Research and Decision Theory 606 $aQuantitative Economics 615 0$aOperations research. 615 0$aEconometrics. 615 14$aOperations Research and Decision Theory. 615 24$aQuantitative Economics. 676 $a324/.01/516 700 $aSaari$b D$g(Donald)$4aut$4http://id.loc.gov/vocabulary/relators/aut$057216 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910954468203321 996 $aBasic geometry of voting$9911738 997 $aUNINA