LEADER 02623nam 22005295 450 001 9910887813703321 005 20260113152955.0 010 $a981-9732-70-0 024 7 $a10.1007/978-981-97-3270-8 035 $a(MiAaPQ)EBC31685275 035 $a(Au-PeEL)EBL31685275 035 $a(CKB)36171318600041 035 $a(DE-He213)978-981-97-3270-8 035 $a(EXLCZ)9936171318600041 100 $a20240923d2024 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aConcepts of Fuzzy Mathematics /$fby Manoranjan Kumar Singh 205 $a1st ed. 2024. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2024. 215 $a1 online resource (680 pages) 225 1 $aForum for Interdisciplinary Mathematics,$x2364-6756 311 08$a981-9732-69-7 327 $a1 Fundamental of Crisp Set Theory -- 2 Fundamental Concepts of Fuzzy Sets -- 3 Generalization of Fuzzy Sets -- 4 Decomposition of a Fuzzy Set and Extension Principle -- 5 Fuzzy Set-Theoretic Operators -- 6 Arithmetic Operations and Fuzzy Mathematics -- 7 Fuzzy Relations. 330 $aThis comprehensive introductory textbook is designed for undergraduate mathematics students seeking to gain a strong understanding of fuzzy sets and relations. Covering all major topics in the field, this course provides a solid foundation in fuzzy mathematics, similar to a pre-calculus course covering algebra, functions and trigonometry. The book is enriched with more than 225 solved examples, 194 challenging problems, 276 multiple-choice questions and 240 true/false statements, making it an ideal companion for students looking to master the basics of fuzzy mathematics. Whether readers are studying on their own or as part of a classroom setting, this book provides a unified and comprehensive treatment of the subject, ensuring that readers have the knowledge and skills they need to succeed. 410 0$aForum for Interdisciplinary Mathematics,$x2364-6756 606 $aSet theory 606 $aSet Theory 606 $aConjunts borrosos$2thub 606 $aTeoria de conjunts$2thub 608 $aLlibres electrònics$2thub 615 0$aSet theory. 615 14$aSet Theory. 615 7$aConjunts borrosos 615 7$aTeoria de conjunts 676 $a511.313 700 $aSingh$b Manoranjan Kumar$01770990 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910887813703321 996 $aConcepts of Fuzzy Mathematics$94254749 997 $aUNINA