LEADER 01314nam0 22002893i 450 001 VAN0193247 005 20210728125754.973 017 70$2N$a978-3-319-07290-6 100 $a20210728d2015 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aPreparing the Public Health Workforce$eEducational Pathways for the Field and the Classroom$fRosemary M. Caron 210 $aCham$cSpringer$d2015 215 $aXVI, 132 p.$d24 cm 500 1$3VAN0193248$aPreparing the Public Health Workforce : Educational Pathways for the Field and the Classroom$91835264 620 $aCH$dCham$3VANL001889 700 1$aCaron$bRosemary M.$3VANV171010$0825084 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttps://link.springer.com/book/10.1007%2F978-3-319-07290-6$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA CENTRO DI SERVIZIO SBA$2VAN15 912 $fN 912 $aVAN0193247 950 $aBIBLIOTECA CENTRO DI SERVIZIO SBA$d15CONS SBA EBOOK 8050 $e15EB 8050 20210728 996 $aPreparing the Public Health Workforce : Educational Pathways for the Field and the Classroom$91835264 997 $aUNICAMPANIA LEADER 03532nam 22006735 450 001 9910887802603321 005 20250808093356.0 010 $a3-031-50466-6 024 7 $a10.1007/978-3-031-50466-2 035 $a(MiAaPQ)EBC31683200 035 $a(Au-PeEL)EBL31683200 035 $a(CKB)36129183000041 035 $a(DE-He213)978-3-031-50466-2 035 $a(EXLCZ)9936129183000041 100 $a20240919d2024 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aOptimal Transport on Quantum Structures /$fedited by Jan Maas, Simone Rademacher, Tamás Titkos, Dániel Virosztek 205 $a1st ed. 2024. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2024. 215 $a1 online resource (327 pages) 225 1 $aBolyai Society Mathematical Studies,$x2947-9460 ;$v29 311 08$a3-031-50465-8 327 $aPreface -- Chapter 1. An Introduction to Optimal Transport and Wasserstein Gradient Flows by Alessio Figalli -- Chapter 2. Dynamics and Quantum Optimal Transport:Three Lectures on Quantum Entropy and Quantum Markov Semigroups by Eric A. Carlen -- Chapter 3. Quantum Couplings and Many-body Problems by Francois Golse -- Chapter 4. Quantum Channels and Qubits by Giacomo De Palma and Dario Trevisan -- Chapter 5. Entropic Regularised Optimal Transport in a Noncommutative Setting by Lorenzo Portinale -- Chapter 6. Logarithmic Sobolev Inequalities for Finite Dimensional Quantum Markov Chains by Cambyse Rouzé. 330 $aThe flourishing theory of classical optimal transport concerns mass transportation at minimal cost. This book introduces the reader to optimal transport on quantum structures, i.e., optimal transportation between quantum states and related non-commutative concepts of mass transportation. It contains lecture notes on classical optimal transport and Wasserstein gradient flows dynamics and quantum optimal transport quantum couplings and many-body problems quantum channels and qubits These notes are based on lectures given by the authors at the "Optimal Transport on Quantum Structures" School held at the Erdös Center in Budapest in the fall of 2022. The lecture notes are complemented by two survey chapters presenting the state of the art in different research areas of non-commutative optimal transport. 410 0$aBolyai Society Mathematical Studies,$x2947-9460 ;$v29 606 $aMathematics 606 $aMathematical analysis 606 $aGlobal analysis (Mathematics) 606 $aManifolds (Mathematics) 606 $aMeasure theory 606 $aMathematics 606 $aAnalysis 606 $aGlobal Analysis and Analysis on Manifolds 606 $aMeasure and Integration 615 0$aMathematics. 615 0$aMathematical analysis. 615 0$aGlobal analysis (Mathematics) 615 0$aManifolds (Mathematics) 615 0$aMeasure theory. 615 14$aMathematics. 615 24$aAnalysis. 615 24$aGlobal Analysis and Analysis on Manifolds. 615 24$aMeasure and Integration. 676 $a530.12015196 700 $aMaas$b Jan$01769223 701 $aRademacher$b Simone$01769224 701 $aTitkos$b Tamás$01769225 701 $aVirosztek$b Dániel$01769226 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910887802603321 996 $aOptimal Transport on Quantum Structures$94237448 997 $aUNINA