LEADER 03532nam 22006735 450 001 9910887802603321 005 20250808093356.0 010 $a3-031-50466-6 024 7 $a10.1007/978-3-031-50466-2 035 $a(MiAaPQ)EBC31683200 035 $a(Au-PeEL)EBL31683200 035 $a(CKB)36129183000041 035 $a(DE-He213)978-3-031-50466-2 035 $a(EXLCZ)9936129183000041 100 $a20240919d2024 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aOptimal Transport on Quantum Structures /$fedited by Jan Maas, Simone Rademacher, Tamás Titkos, Dániel Virosztek 205 $a1st ed. 2024. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2024. 215 $a1 online resource (327 pages) 225 1 $aBolyai Society Mathematical Studies,$x2947-9460 ;$v29 311 08$a3-031-50465-8 327 $aPreface -- Chapter 1. An Introduction to Optimal Transport and Wasserstein Gradient Flows by Alessio Figalli -- Chapter 2. Dynamics and Quantum Optimal Transport:Three Lectures on Quantum Entropy and Quantum Markov Semigroups by Eric A. Carlen -- Chapter 3. Quantum Couplings and Many-body Problems by Francois Golse -- Chapter 4. Quantum Channels and Qubits by Giacomo De Palma and Dario Trevisan -- Chapter 5. Entropic Regularised Optimal Transport in a Noncommutative Setting by Lorenzo Portinale -- Chapter 6. Logarithmic Sobolev Inequalities for Finite Dimensional Quantum Markov Chains by Cambyse Rouzé. 330 $aThe flourishing theory of classical optimal transport concerns mass transportation at minimal cost. This book introduces the reader to optimal transport on quantum structures, i.e., optimal transportation between quantum states and related non-commutative concepts of mass transportation. It contains lecture notes on classical optimal transport and Wasserstein gradient flows dynamics and quantum optimal transport quantum couplings and many-body problems quantum channels and qubits These notes are based on lectures given by the authors at the "Optimal Transport on Quantum Structures" School held at the Erdös Center in Budapest in the fall of 2022. The lecture notes are complemented by two survey chapters presenting the state of the art in different research areas of non-commutative optimal transport. 410 0$aBolyai Society Mathematical Studies,$x2947-9460 ;$v29 606 $aMathematics 606 $aMathematical analysis 606 $aGlobal analysis (Mathematics) 606 $aManifolds (Mathematics) 606 $aMeasure theory 606 $aMathematics 606 $aAnalysis 606 $aGlobal Analysis and Analysis on Manifolds 606 $aMeasure and Integration 615 0$aMathematics. 615 0$aMathematical analysis. 615 0$aGlobal analysis (Mathematics) 615 0$aManifolds (Mathematics) 615 0$aMeasure theory. 615 14$aMathematics. 615 24$aAnalysis. 615 24$aGlobal Analysis and Analysis on Manifolds. 615 24$aMeasure and Integration. 676 $a530.12015196 700 $aMaas$b Jan$01769223 701 $aRademacher$b Simone$01769224 701 $aTitkos$b Tamás$01769225 701 $aVirosztek$b Dániel$01769226 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910887802603321 996 $aOptimal Transport on Quantum Structures$94237448 997 $aUNINA