LEADER 03639nam 22006135 450 001 9910886993203321 005 20250807132314.0 010 $a3-031-63768-2 024 7 $a10.1007/978-3-031-63768-1 035 $a(MiAaPQ)EBC31654310 035 $a(Au-PeEL)EBL31654310 035 $a(CKB)34975738800041 035 $a(DE-He213)978-3-031-63768-1 035 $a(EXLCZ)9934975738800041 100 $a20240910d2024 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSquare Roots of Elliptic Systems in Locally Uniform Domains /$fby Sebastian Bechtel 205 $a1st ed. 2024. 210 1$aCham :$cSpringer International Publishing :$cImprint: Birkhäuser,$d2024. 215 $a1 online resource (191 pages) 225 1 $aLinear Operators and Linear Systems,$x2504-3617 ;$v303 311 08$a3-031-63767-4 327 $aIntroduction -- Locally uniform domains -- A density result for locally uniform domains -- Sobolev extension operator -- A short account on sectorial and bisectorial operators -- Elliptic systems in divergence form -- Porous sets -- Sobolev spaces with a vanishing trace condition -- Hardy?s inequality -- Real interpolation of Sobolev spaces -- Higher regularity for fractional powers of the Laplacian -- First order formalism -- Kato?s square root property on thick sets -- Removing the thickness condition -- Interlude: Extension operators for fractional Sobolev spaces -- Critical numbers and Lp ? Lq bounded families of operators -- Lp-bounds for the H1-calculus and Riesz transform -- Calder´on?Zygmund decomposition for Sobolev functions -- Lp bounds for square roots of elliptic systems -- References -- Index. 330 $aThis book establishes a comprehensive theory to treat square roots of elliptic systems incorporating mixed boundary conditions under minimal geometric assumptions. To lay the groundwork, the text begins by introducing the geometry of locally uniform domains and establishes theory for function spaces on locally uniform domains, including interpolation theory and extension operators. In these introductory parts, fundamental knowledge on function spaces, interpolation theory and geometric measure theory and fractional dimensions are recalled, making the main content of the book easier to comprehend. The centerpiece of the book is the solution to Kato's square root problem on locally uniform domains. The Kato result is complemented by corresponding L? bounds in natural intervals of integrability parameters. This book will be useful to researchers in harmonic analysis, functional analysis and related areas. 410 0$aLinear Operators and Linear Systems,$x2504-3617 ;$v303 606 $aDifferential equations 606 $aFunctional analysis 606 $aOperator theory 606 $aFunctions of real variables 606 $aDifferential Equations 606 $aFunctional Analysis 606 $aOperator Theory 606 $aReal Functions 615 0$aDifferential equations. 615 0$aFunctional analysis. 615 0$aOperator theory. 615 0$aFunctions of real variables. 615 14$aDifferential Equations. 615 24$aFunctional Analysis. 615 24$aOperator Theory. 615 24$aReal Functions. 676 $a515.35 700 $aBechtel$b Sebastian$01768512 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910886993203321 996 $aSquare Roots of Elliptic Systems in Locally Uniform Domains$94229476 997 $aUNINA