LEADER 04026nam 22006855 450 001 9910886069403321 005 20240903130506.0 010 $a3-031-58156-3 024 7 $a10.1007/978-3-031-58156-4 035 $a(MiAaPQ)EBC31641984 035 $a(Au-PeEL)EBL31641984 035 $a(CKB)34774629600041 035 $a(DE-He213)978-3-031-58156-4 035 $a(EXLCZ)9934774629600041 100 $a20240903d2024 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aPartial Moments in System Identification /$fby Régis Ouvrard, Thierry Poinot, Jean-Claude Trigeassou 205 $a1st ed. 2024. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2024. 215 $a1 online resource (179 pages) 225 1 $aLecture Notes in Control and Information Sciences,$x1610-7411 ;$v494 311 $a3-031-58155-5 327 $aChapter 1. An introduction about moments in identification -- Chapter 2. An introductory example -- Chapter 3. Partial moments in continuous-time -- Chapter 4. Partial moments in discrete-time -- Chapter 5. Algebraic identification, a partial moment approach -- Chapter 6. Continuous-time subspace based method -- Chapter 7. Continuous-time linear parameter varying model -- Chapter 8. Multidimensional partial moments -- Chapter 9. Perspectives -- Referrences. 330 $aThis book provides a complete round-up of developments concerned with the application of partial moments in system identification and data-driven modelling; it captures the essence of work carried out at the Laboratoire d'Informatique et d'Automatique pour les Systèmes for more than 40 years. The book begins with introductory material, describing both the mathematical tools associated with partial moments and reinitialized partial moments and an example demonstrating their use. The authors then proceed to show how these tools can be used for the identification of continuous-time linear models, discrete-time linear models, continuous-time linear state-space models, linear parameter-varying models and multidimensional models based on partial differential equations. The properties and performances of each of these approaches are presented. The analogy with algebraic approaches is proved, thus opening perspectives for extension to other fields. The text removes some long-standing limitations on the implementation of partial-moment-based tools in system identification. This book is of interest to researchers and postgraduates studying system identification, control theory, applied mathematics and computer science. It is also useful for engineers working on industrial applications of parametric estimation of mathematical models. . 410 0$aLecture Notes in Control and Information Sciences,$x1610-7411 ;$v494 606 $aSystem theory 606 $aControl theory 606 $aControl engineering 606 $aDifferential equations 606 $aComputer science$xMathematics 606 $aDiscrete mathematics 606 $aSystems Theory, Control 606 $aControl and Systems Theory 606 $aDifferential Equations 606 $aDiscrete Mathematics in Computer Science 615 0$aSystem theory. 615 0$aControl theory. 615 0$aControl engineering. 615 0$aDifferential equations. 615 0$aComputer science$xMathematics. 615 0$aDiscrete mathematics. 615 14$aSystems Theory, Control. 615 24$aControl and Systems Theory. 615 24$aDifferential Equations. 615 24$aDiscrete Mathematics in Computer Science. 676 $a003 700 $aOuvrard$b Régis$01770063 701 $aPoinot$b Thierry$01770064 701 $aTrigeassou$b Jean-Claude$0880053 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910886069403321 996 $aPartial Moments in System Identification$94247196 997 $aUNINA