LEADER 08902nam 22004813 450 001 9910885200303321 005 20240831060209.0 010 $a1-119-69931-2 010 $a1-119-69932-0 010 $a1-119-69922-3 035 $a(CKB)34342958400041 035 $a(MiAaPQ)EBC31622274 035 $a(Au-PeEL)EBL31622274 035 $a(EXLCZ)9934342958400041 100 $a20240831d2024 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aElectromagnetic Wave Absorbing Materials $eFundamentals and Applications 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2024. 210 4$d©2024. 215 $a1 online resource (269 pages) 225 1 $aWiley Series in Materials for Electronic and Optoelectronic Applications Series 311 $a1-119-69934-7 327 $aCover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Overview of the Work -- Description -- Key Features -- Acknowledgments -- 1 Metal-Organic Framework-Based Electromagnetic Wave Absorption Materials -- 1.1 Brief Introduction to Metal-Organic Frameworks -- 1.2 Preparation Method of MOF Materials -- 1.2.1 Solvothermal Method -- 1.2.2 Microwave-Assisted Synthesis Method -- 1.2.3 Electrochemical Synthesis Method -- 1.2.4 Ultrasonic Method -- 1.2.5 Mechanochemistry Method -- 1.2.6 Steam-Assisted Conversion Method -- 1.2.7 Fluid Chemistry Method -- 1.3 MOF-Derived EMW Absorption Materials -- 1.3.1 Monometallic MOF-Derived Absorption Materials -- 1.3.2 Multi-metal MOF-Derived Absorption Materials -- 1.3.3 MOF-Carbon Composite Absorption Materials -- 1.3.4 MOF-MXene Composite Absorption Materials -- 1.3.5 MOF-Conductive Polymer Composite Absorption Materials -- 1.4 Summarize and Prospect -- References -- 2 2D MXenes for Electromagnetic Wave Absorption -- 2.1 Introduction to MXenes -- 2.2 Preparation Method of MXenes -- 2.2.1 Top-Down Strategy -- 2.2.1.1 HF Etching -- 2.2.1.2 In Situ HF Etching -- 2.2.1.3 Alkaline Solution Chemical Etching -- 2.2.1.4 Electrochemical Etching -- 2.2.1.5 Molten Salt Etching -- 2.2.2 Bottom-Up Strategies -- 2.2.2.1 Chemical Vapor Deposition -- 2.3 The Properties of MXenes -- 2.3.1 Morphologies and Surface Chemistries -- 2.3.2 Mechanical Properties -- 2.3.3 Electronic, Transport, and Band Gap Properties -- 2.3.4 Thermal Stability Properties -- 2.4 Electromagnetic Wave Absorption Performance of Pure MXenes -- 2.4.1 Content -- 2.4.2 Functional Groups and Defects -- 2.4.3 Size -- 2.4.4 Interlayer Spacing -- 2.4.5 Doping -- 2.4.6 Self-Transformation -- 2.5 Classification of MXenes in EMW Absorbing Materials -- 2.5.1 Component Optimization -- 2.5.1.1 Dielectric Materials -- 2.5.1.2 Magnetism. 327 $a2.5.1.3 Multiple Loss Materials -- 2.5.2 Structural Regulation -- 2.5.2.1 3D Microsphere -- 2.5.2.2 Fiber -- 2.5.2.3 Sandwich Structure -- 2.5.2.4 Hierarchical Structure -- 2.6 The Application Prospects of MXenes in EMW-Absorbing Materials -- References -- 3 High-Entropy Electromagnetic Wave Absorption Materials -- 3.1 The Concept and Features of High-Entropy Materials -- 3.1.1 The Definition of High-Entropy Materials -- 3.1.2 Broaden Elemental Combination and Microstructure -- 3.1.3 Dialectical View of Single-Phase Solid Solution Properties -- 3.1.4 The Theoretical Approach of Phase Selection in HEM -- 3.1.5 Four Core Effects of HEM -- 3.1.5.1 "High-Entropy" Effect -- 3.1.5.2 "Lattice Distortion" Effect -- 3.1.5.3 "Sluggish Diffusion" Effect -- 3.1.5.4 "Cocktail" Effect -- 3.2 The Synthesis Approach and Advanced Characterization of HEM -- 3.2.1 HEM Synthesis -- 3.2.1.1 Traditional Template Sintering Method -- 3.2.1.2 High-Temperature "Thermal Shock" Method -- 3.2.1.3 HEM Synthesis Strategy Under Mild Conditions -- 3.2.2 Advanced Characterization of HEM -- 3.3 High-Entropy Electromagnetic Wave Absorption Materials -- 3.3.1 High-Entropy Alloy -- 3.3.2 High-Entropy Oxide -- 3.3.3 High-Entropy Sulfide -- 3.4 The Challenge and Prospects of HEM -- References -- 4 Novel Microscopic Electromagnetic Loss Mechanisms -- 4.1 Novel Dielectric Loss Mechanisms -- 4.1.1 Synergistic Effects of Selenium-Sulfur Co-Doping-Induced Dielectric Polarization -- 4.1.2 Synergistic Effects of Hybridization State-Induced Dielectric Polarization -- 4.1.3 Synergistic Effects of Twin Structure-Induced Dielectric Polarization -- 4.1.4 Synergistic Effects of 3D Orbitals Unpaired Electron-Induced Dielectric Polarization -- 4.1.5 Interpretation of Energy Band Theory in Dielectric Loss -- 4.1.6 Defect-Induced Polarization Loss in Multi-Shelled Spinel Hollow Spheres. 327 $a4.2 Novel Microscopic Magnetic Loss Mechanisms -- 4.2.1 Magnetic Losses Induced by the Sequence Structure of Metallic Magnetic Chains -- 4.2.2 Multi-Model Sequence Structure for Improving Magnetic Loss -- 4.2.3 Enhanced Magnetic Coupling in Hollow Porous Carbon Three-Dimensional Magnetic Networks -- 4.2.4 Enhanced Magnetic Coupling Through Core-Shell Structural Design -- 4.3 Conclusion and Outlook -- References -- 5 Bridging Mechanisms Between Micro and Macro -- 5.1 Introduction to Micro Factors -- 5.1.1 Defects -- 5.1.2 Interfaces -- 5.1.3 Conductivity -- 5.1.4 Dipole -- 5.1.5 Saturation Magnetization -- 5.2 Regulation of Microscopic Attributes -- 5.2.1 Conventional Regulation -- 5.2.2 Physical External Fields Regulation -- 5.3 The Current State and Future Potential of Bridge Mechanism Between Micro and Macro Levels -- References -- 6 New Dielectric Physical Models for Electromagnetic Wave Absorption -- 6.1 Dielectric Microphysical Model -- 6.1.1 Dimension Distribution-Induced Interfacial Polarization Model -- 6.1.2 Three Types of Polarization Site Models -- 6.1.3 Electron Hopping and Electron Migrating Model -- 6.1.4 Three-Dimensional Conductive Network Model in Foam -- 6.1.5 Disordered Structure on the Atomic Scale-High-Entropy Models -- 6.2 Physical Models Related to Structural Design -- 6.2.1 Hierarchical Structural Models for Improved Impedance Matching -- 6.2.2 Core-Shell Structure Model -- 6.2.3 Double-Shell Structure Model -- 6.3 Intelligent Off/On Switchable Model -- 6.4 Conclusion and Outlook -- References -- 7 Integrated Foam-Type Electromagnetic Wave Absorption Materials -- 7.1 Carbon-Based Foam for EMW Absorption -- 7.1.1 Pure Carbon-Based Foams -- 7.1.2 Composite Foams Formed by Carbon Material -- 7.1.3 Composite Foams of Carbon Material and Magnetic Metal -- 7.1.4 Composite Foams of Carbon Material and Metal Oxides. 327 $a7.1.5 Composite Foams of Carbon Material and Ceramic Materials -- 7.1.6 Composite Foams of Carbon Material and MXene -- 7.2 Ferrite-Based Foam for EMW Absorption -- 7.3 SiC-Based Foam for EMW Absorption -- 7.4 Conductive Polymer Composites Foam for EMW Absorption -- References -- 8 Integral Gel Electromagnetic Wave Absorption Materials -- 8.1 Dielectric Liquid Medium Gel Electromagnetic Wave Absorption Materials -- 8.1.1 Progress in the Application and Research of Hydrogel EMW Absorption Materials -- 8.1.2 Progress in the Application and Research of Ionic and Organic Gel EMW Absorption Materials -- 8.1.3 Progress in the Research of Poly(Ionic Liquid) Gels -- 8.1.4 Perspectives on Dielectric Liquid Medium Gel EMW-Absorbing Materials -- 8.2 Dielectric Solid Medium Gel EMW Absorption Materials -- 8.2.1 Ceramic-Based Aerogel EMW Absorption Materials -- 8.2.1.1 Preparation Method of Ceramic-Based Aerogel EMW Absorption Materials -- 8.2.1.2 Ceramic-Based Aerogel EMW Absorber Applications and Research Progress -- 8.2.1.3 Polymer-Derived Ceramics Aerogels: EMW Absorber Applications and Research Progress -- 8.2.2 Metal-Based Aerogel EMW Absorption Materials -- 8.2.2.1 Preparation Method of Metal-Based Aerogel Absorption Materials -- 8.2.2.2 Metal Aerogels: EMW Absorber Applications and Research Progress -- 8.2.2.3 Composite Metal-Based Aerogels: EMW Absorber Applications and Research Progress -- 8.3 Prospect of Integral Gel EMW Absorption Materials -- References -- 9 Thin-Film Electromagnetic Wave Absorption Materials -- 9.1 Introduction -- 9.2 Film Electromagnetic Wave Absorption Materials -- 9.2.1 Carbon-Based Composite Films -- 9.2.2 Magnetic Metal Films -- 9.2.3 Thin-Film Materials Composite with Metal Oxides -- 9.2.4 MXene Films -- 9.2.5 Thin-Film Material Composite with Sulfide -- 9.3 The Conclusion and Prospect -- References -- Index -- EULA. 410 0$aWiley Series in Materials for Electronic and Optoelectronic Applications Series 676 $a621.380284 700 $aWu$b Hongjing$01768860 701 $aLuo$b Jun$01605973 701 $aYang$b Meiyin$01768861 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910885200303321 996 $aElectromagnetic Wave Absorbing Materials$94233748 997 $aUNINA