LEADER 03527nam 22006015 450 001 9910879593403321 005 20260113141140.0 010 $a3-031-61337-6 024 7 $a10.1007/978-3-031-61337-1 035 $a(MiAaPQ)EBC31601186 035 $a(Au-PeEL)EBL31601186 035 $a(CKB)33987634600041 035 $a(DE-He213)978-3-031-61337-1 035 $a(OCoLC)1455139855 035 $a(EXLCZ)9933987634600041 100 $a20240813d2024 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aTopological Methods for Delay and Ordinary Differential Equations $eWith Applications to Continuum Mechanics /$fedited by Pablo Amster, Pierluigi Benevieri 205 $a1st ed. 2024. 210 1$aCham :$cSpringer International Publishing :$cImprint: Birkhäuser,$d2024. 215 $a1 online resource (220 pages) 225 1 $aAdvances in Continuum Mechanics,$x2524-4647 ;$v51 311 08$a3-031-61336-8 327 $aPeriodic solutions of Hamiltonian systems with symmetries -- Prescribed energy periodic solutions of Kepler problems with relativistic corrections -- A survey on some existence results for the relativistic pendulum equation -- Recent advances on periodic motions in parallel-plate electrostatic actuators -- Analysis of a mathematical model of competition in a chain of periodic chemostats in series -- Nontrivial solutions of a parameter-dependent Nontrivial solutions of a parameter-dependent -- Branches of forced oscillations for a class of implicit equations involving the ?-Laplacian -- Atypical bifurcation for a class of delay differential equations -- New elements for a theory of chaos topology. 330 $aThis volume explores the application of topological techniques in the study of delay and ordinary differential equations with a particular focus on continuum mechanics. Chapters, written by internationally recognized researchers in the field, present results on problems of existence, multiplicity localization, bifurcation of solutions, and more. Topological methods are used throughout, including degree theory, fixed point index theory, and classical and recent fixed point theorems. A wide variety of applications to continuum mechanics are provided as well, such as chemostats, non-Newtonian fluid flow, and flows in phase space. Topological Methods for Delay and Ordinary Differential Equations will be a valuable resource for researchers interested in differential equations, functional analysis, topology, and the applied sciences. 410 0$aAdvances in Continuum Mechanics,$x2524-4647 ;$v51 606 $aDifferential equations 606 $aContinuum mechanics 606 $aDifferential Equations 606 $aContinuum Mechanics 606 $aMecānica dels medis continus$2thub 606 $aEquacions diferencials$2thub 608 $aLlibres electrōnics$2thub 615 0$aDifferential equations. 615 0$aContinuum mechanics. 615 14$aDifferential Equations. 615 24$aContinuum Mechanics. 615 7$aMecānica dels medis continus 615 7$aEquacions diferencials 676 $a515.35 700 $aAmster$b Pablo$0524651 701 $aBenevieri$b Pierluigi$0311871 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910879593403321 996 $aTopological Methods for Delay and Ordinary Differential Equations$94206679 997 $aUNINA