LEADER 03814nam 22007455 450 001 9910878064703321 005 20250715154751.0 010 $a3-031-48491-6 024 7 $a10.1007/978-3-031-48491-9 035 $a(MiAaPQ)EBC31569669 035 $a(Au-PeEL)EBL31569669 035 $a(CKB)33428338800041 035 $a(DE-He213)978-3-031-48491-9 035 $a(EXLCZ)9933428338800041 100 $a20240725d2024 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aTwo-dimensional Two-product Cubic Systems Vol.II $eCrossing-linear and Self-quadratic Product Vector Fields /$fby Albert C. J. Luo 205 $a1st ed. 2024. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2024. 215 $a1 online resource (326 pages) 300 $aIncludes index. 311 08$a3-031-48490-8 327 $aPreface -- Crossing-linear and Self-quadratic Product Systems -- Double-saddles and switching dynamics -- Vertically Paralleled Saddle-source and Saddle-sink -- Horizontally Paralleled Saddle-source and Saddle-sink -- Simple Equilibrium Networks and Switching Dynamics. 330 $aThis book, the tenth of 15 related monographs, discusses product-cubic nonlinear systems with two crossing-linear and self-quadratic products vector fields and the dynamic behaviors and singularity are presented through the first integral manifolds. The equilibrium and flow singularity and bifurcations discussed in this volume are for the appearing and switching bifurcations. The double-saddle equilibriums described are the appearing bifurcations for saddle source and saddle-sink, and for a network of saddles, sink and source. The infinite-equilibriums for the switching bifurcations are also presented, specifically: · Inflection-saddle infinite-equilibriums, · Hyperbolic (hyperbolic-secant)-sink and source infinite-equilibriums · Up-down and down-up saddle infinite-equilibriums, · Inflection-source (sink) infinite-equilibriums. Develops a theory of nonlinear dynamics and singularity of crossing-linear and self-quadratic product dynamical systems; Shows hybrid networks of singular/simple equilibriums and hyperbolic flows in two same structure product-cubic systems; Presents network switching bifurcations through infinite-equilibriums of inflection-saddles hyperbolic-sink and source. 606 $aDynamics 606 $aNonlinear theories 606 $aSystem theory 606 $aMultibody systems 606 $aVibration 606 $aMechanics, Applied 606 $aAlgebra, Universal 606 $aEngineering mathematics 606 $aEngineering$xData processing 606 $aApplied Dynamical Systems 606 $aComplex Systems 606 $aMultibody Systems and Mechanical Vibrations 606 $aGeneral Algebraic Systems 606 $aMathematical and Computational Engineering Applications 615 0$aDynamics. 615 0$aNonlinear theories. 615 0$aSystem theory. 615 0$aMultibody systems. 615 0$aVibration. 615 0$aMechanics, Applied. 615 0$aAlgebra, Universal. 615 0$aEngineering mathematics. 615 0$aEngineering$xData processing. 615 14$aApplied Dynamical Systems. 615 24$aComplex Systems. 615 24$aMultibody Systems and Mechanical Vibrations. 615 24$aGeneral Algebraic Systems. 615 24$aMathematical and Computational Engineering Applications. 676 $a003 700 $aLuo$b Albert C. J.$0720985 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910878064703321 996 $aTwo-dimensional Two-product Cubic Systems Vol.II$94412521 997 $aUNINA