LEADER 10579nam 22005413 450 001 9910877865503321 005 20230728080304.0 010 $a9781119764403 010 $a1119764408 010 $a9781119764380 010 $a1119764386 010 $a9781119764397 010 $a1119764394 035 $a(MiAaPQ)EBC7275448 035 $a(Au-PeEL)EBL7275448 035 $a(CKB)27860990500041 035 $a(Exl-AI)7275448 035 $a(EXLCZ)9927860990500041 100 $a20230728d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aBiochar Applications for Wastewater Treatment 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2023. 210 4$dİ2023. 215 $a1 online resource (338 pages) 311 08$aPrint version: Tsang, Daniel C. W. Biochar Applications for Wastewater Treatment Newark : John Wiley & Sons, Incorporated,c2023 9781119764373 327 $aIntro -- Biochar Applications for Wastewater Treatment -- Contents -- Editors Biography -- List of Contributors -- Preface -- 1 Engineered Biochar -- 1.1 Overview of Biochar Production -- 1.2 Biochar Properties and Characterization -- 1.3 Pre- and Post-Modification of Biochar -- 1.3.1 Physical Modification -- 1.3.2 Chemical Modification -- 1.3.3 Biochar Composites -- 1.4 Sustainability Considerations -- 2 Adsorption of Nutrients -- 2.1 Nutrients in Wastewater -- 2.2 Biochar Performance in Nutrients Removal from Wastewater -- 2.2.1 Removal of Ammonium Using Modified and Pristine Biochars -- 2.2.2 Removal of Nitrate Using Pristine and Modified Biochars -- 2.2.3 Removal of Phosphate Using Pristine and Modified Biochars -- 2.3 Biochar Mechanisms of Nutrients Removal from Wastewater -- 2.3.1 Specific Surface Area -- 2.3.2 Ion Exchange -- 2.3.3 Surface Functional Groups -- 2.3.4 Precipitation -- 2.4 Factors Influencing Biochar Performance in Nutrients Removal -- 2.4.1 Pyrolysis Temperature -- 2.4.2 Metallic Oxides on Biochar -- 2.4.3 Solution pH -- 2.4.4 Contact Time -- 2.4.5 Ambient Temperature -- 2.4.6 Coexisting Ions -- 2.5 Nutrients Desorption from Biochar -- 2.5.1 Ammonium Desorption -- 2.5.2 Nitrate Desorption -- 2.5.3 Phosphorous Desorption -- 2.6 Nutrient-loaded Biochar as Potential Nutrient Suppliers -- 3 Adsorption of Metals/Metalloids -- 3.1 Metals/Metalloids in Wastewater -- 3.2 Mechanisms of Biochar for Adsorption of Metals/Metalloids -- 3.2.1 Physical Adsorption -- 3.2.2 Electrostatic Interaction -- 3.2.3 Ion Exchange -- 3.2.4 Surface Complexation -- 3.2.5 Precipitation -- 3.2.6 Reduction -- 3.3 Modified Biochar for Adsorption of Metals/Metalloids -- 3.3.1 Biochar/Layered Double Hydroxide Composites -- 3.3.2 Magnetic Biochar Composites -- 3.3.3 Biochar-Supported nZVI Composites. 327 $a3.3.4 Comparison of Different Modification Methods for Metals/Metalloids -- 3.4 Biochar Recycling after Adsorption of Metals/Metalloids -- 4 Adsorption of PPCPs -- 4.1 PPCPs in Wastewater -- 4.2 Biochar Mechanisms for PPCPs Adsorption -- 4.2.1 ?-? Interaction -- 4.2.2 Hydrogen Bonding -- 4.2.3 Electrostatic Interaction -- 4.2.4 Other Mechanisms -- 4.3 Factors Affecting PPCPs Adsorption by Biochar -- 4.3.1 Pyrolysis Temperature -- 4.3.2 Biochar Surface Modification -- 4.3.3 Properties of PPCPs -- 4.3.4 Environmental pH -- 4.3.5 Wastewater Composition -- 5 Stormwater Biofiltration Media -- 5.1 Introduction -- 5.2 Common Pollutants in Stormwater -- 5.3 Biochar for Biofiltration Media -- 5.3.1 Production of Biochar -- 5.3.2 Physicochemical Properties of Biochar -- 5.4 Removal of Pollutants in Biochar-Based Biofiltration Systems -- 5.4.1 Metals/Metalloids -- 5.4.2 Nutrient -- 5.4.3 Organic Chemicals -- 5.5 Microplastic in Urban Runoff -- 5.6 Challenge and Perspective -- 5.7 Conclusion -- 6 Biochar Solution for Anaerobic Digestion -- 6.1 Introduction -- 6.2 Application of BC as an Additive in Anaerobic Digestion -- 6.2.1 pH Buffering -- 6.2.2 Adsorption of Inhibitors -- 6.2.3 Effects on Microbial Growth and Activities -- 6.3 Effects of BC on Digestate Quality -- 6.4 Conclusions and Perspectives -- 7 Biochar-Assisted Anaerobic Ammonium Oxidation -- 7.1 Overview of Anaerobic Ammonium Oxidation -- 7.1.1 Introduction -- 7.1.2 Constraints -- 7.2 Roles of Biochar in Promoting Anammox -- 7.2.1 pH and Inhibitor Buffer -- 7.2.2 Electron Transfer Promotion -- 7.2.3 Microbial Immobilization -- 7.3 Future Perspectives -- 8 Application of Biochar for Sludge Dewatering -- 8.1 Introduction -- 8.2 Preparation of Biochar-Based Sludge Conditioner -- 8.3 Efficacy of Biochar Conditioning on Enhanced Sludge Dewaterability. 327 $a8.4 Variations of Sludge Physicochemical Characteristics via Biochar Conditioning -- 8.5 Technical Mechanism and Implementation Prospects -- 9 Effects of Biochar on Sludge Composting -- 9.1 Introduction -- 9.2 Effects of Biochar Addition on Sludge Composting -- 9.2.1 Effects on Compost Parameters Effect on C/N -- 9.2.2 Effects on Heavy Metals -- 9.2.3 Effects on Organic Matters -- 9.2.4 Effects on Gaseous Emissions -- 9.2.5 Effects on Microbial Community and Activities -- 9.2.6 Effects on Quality of Sludge Compost -- 9.3 Future Perspectives -- 9.4 Summary -- 10 Sludge Utilization as Biochar for Nutrient Recovery -- 10.1 Sewage Sludge (SS) Management -- 10.2 Importance of Sludge as a Feedstock for Biochar -- 10.3 Factors Affecting the Properties of SDBC -- 10.3.1 Raw Material -- 10.3.2 Temperature -- 10.3.3 Heating Rates -- 10.3.4 Retention Time -- 10.4 Nutrients in SDBC -- 10.4.1 Nitrogen (N) -- 10.4.2 Phosphorus (P) -- 10.4.3 Potassium (K) -- 10.5 SDBC for Soil Amendment and Nutrient Utilization -- 10.6 Current Challenges for SDBC -- 10.7 Conclusions -- 11 Biochar for Electrochemical Treatment of Wastewater -- 11.1 Introduction -- 11.2 Different Electrochemical Behavior of Biochar -- 11.2.1 Electron Exchange -- 11.2.2 Electron Donor or Acceptor -- 11.2.3 Electrosorption Capacity -- 11.3 Preparation of Biochar Electrode Materials -- 11.3.1 Carbonization -- 11.3.2 Activation -- 11.3.3 Template -- 11.3.4 Composite Materials -- 11.4 Application in Electrochemical Wastewater Treatment -- 11.4.1 Electrochemical Oxidation -- 11.4.2 Electrochemical Deposition -- 11.4.3 Electro-adsorption -- 11.4.4 Electrochemical Disinfection -- 11.5 Future Perspectives -- 11.6 Summary -- 12 Peroxide-Based Biochar-Assisted Advanced Oxidation -- 12.1 Introduction -- 12.2 Biochar-Based Catalysts -- 12.2.1 Pristine Biochar -- 12.2.2 Redox Metal-Loaded Biochar. 327 $a12.2.3 Heteroatom-Doped Biochar -- 12.3 Peroxide-Based Advanced Oxidation -- 12.3.1 Fenton-Like System -- 12.3.2 Persulfate Activation System -- 12.3.3 Photocatalytic System -- 12.4 Conclusion and Future Perspectives -- 13 Persulfate-Based Biochar-Assisted Advanced Oxidation -- 13.1 Introduction -- 13.2 Activation Pathway and Reaction Mechanism of Persulfate by Biochar -- 13.2.1 Distinction between Different Pathways -- 13.2.2 Properties Necessitating the Generation of Radicals with PS -- 13.2.3 Nonradical Degradation with Biochar -- 13.2.4 Modifying Biochar for Enhanced Properties Related to the Degradation Process -- 13.3 Metal-Biochar Composites in Persulfate Activation System -- 13.3.1 Iron-Biochar -- 13.3.2 Copper-biochar -- 13.3.3 Cobalt Biochar -- 13.3.4 Biochar of Other Metal and Mixed Metal -- 13.4 Heteroatom-Doped Biochar for PS Activation -- 13.4.1 Nitrogen-doped Biochar -- 13.4.2 Sulfur-Doped Biochar -- 13.5 Conclusion and Perspectives -- 14 Biochar-Enhanced Ozonation for Sewage Treatment -- 14.1 Introduction -- 14.2 Preparation of Biochar-Based Catalyst for Ozonation -- 14.3 Efficacy of Biochar-Catalytic Ozonation on Sewage Treatment -- 14.4 Effects of Process Conditions on Biochar-Enhanced Ozonation Sewage Treatment -- 14.5 Technical Mechanism and Implementation Prospects -- 15 Biochar-Supported Odor Control -- 15.1 Causes and Treatment of Odor -- 15.2 Odor Pollutants -- 15.3 Properties of Biochar for the Removal of Odor Pollutants -- 15.3.1 Surface Area and Total Pore Volume -- 15.3.2 Pore Size Distribution -- 15.3.3 Chemical Functional Group -- 15.3.4 Noncarbonized Organic Matter -- 15.3.5 Mineral constituents -- 15.4 Application of Biochar in Odor Control -- 15.4.1 Biochar as Adsorbent -- 15.4.2 Biochar as Additives -- 15.5 Conclusion and Perspective -- 16 Fate, Transport, and Impact of Biochar in the Environment. 327 $a16.1 Transport Mechanism of Biochar in the Environment -- 16.2 Stability of Biochar -- 16.2.1 Physical Degradation of Biochar -- 16.2.2 Chemical Decomposition of Biochar -- 16.2.3 Microbial Decomposition of Biochar -- 16.3 Contaminants in Biochar and the Environmental Impact -- 16.3.1 Polycyclic Aromatic Hydrocarbons (PAHs) -- 16.3.2 Heavy Metals (HMs) -- 16.3.3 Persistent Free Radicals (PFRs) -- 16.3.4 Dioxins -- 16.3.5 Metal Cyanide (MCN) -- 16.3.6 Volatile Organic Compounds (VOCs) -- 17 Environmental and Economic Evaluation of Biochar Application in Wastewater and Sludge Treatment -- 17.1 Introduction -- 17.2 Environmental Evaluation -- 17.2.1 LCA Insights into Biochar Production and Applications -- 17.2.2 Main LCA Literature Studies of Biochar Applications in Wastewater and Sludge Treatments -- 17.3 Technical, Economic, and Sustainability Considerations -- 17.4 Future Trends -- 17.5 Conclusions -- Index. 330 $aThis comprehensive volume, edited by Daniel C.W. Tsang and Yuqing Sun, explores the application of biochar in wastewater treatment. It delves into various aspects of biochar production, properties, and modifications, highlighting its efficacy in nutrient and metal removal from wastewater. The book examines the underlying mechanisms of biochar?s adsorption capabilities and discusses its potential as a biofiltration medium and in anaerobic digestion processes. Aimed at researchers and professionals in environmental science and engineering, this work provides insights into biochar's role in pollution mitigation and resource recovery, emphasizing innovative solutions for sustainable wastewater management.$7Generated by AI. 606 $aBiochar$7Generated by AI 606 $aLand treatment of wastewater$7Generated by AI 615 0$aBiochar. 615 0$aLand treatment of wastewater. 700 $aTsang$b Daniel C. W$01761625 701 $aSun$b Yuqing$01761626 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910877865503321 996 $aBiochar Applications for Wastewater Treatment$94201204 997 $aUNINA