LEADER 05240nam 2200625Ia 450 001 9910877816903321 005 20200520144314.0 010 $a1-282-37150-9 010 $a9786612371509 010 $a1-4443-1292-8 010 $a1-4443-0988-9 035 $a(CKB)1000000000794256 035 $a(EBL)454397 035 $a(OCoLC)609843910 035 $a(SSID)ssj0000354211 035 $a(PQKBManifestationID)11270504 035 $a(PQKBTitleCode)TC0000354211 035 $a(PQKBWorkID)10302298 035 $a(PQKB)10473587 035 $a(MiAaPQ)EBC454397 035 $a(EXLCZ)991000000000794256 100 $a20090325d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aFood mixing $eprinciples and applications /$fedited by P.J. Cullen 210 $aAmes, Iowa $cBlackwell Pub.$dc2009 215 $a1 online resource (320 p.) 300 $aDescription based upon print version of record. 311 $a1-4051-7754-3 320 $aIncludes bibliographical references and index. 327 $aCover; Contents; Contributors; 1 Mixing in the food industry: trends and challenges; 1.1 Role of mixing; 1.2 Design criteria for mixing; 1.3 Specific challenges in food mixing; 1.3.1 Quality assurance compliance through mixing; 1.3.2 Engineering texture through mixing; 1.4 Advances in the science of mixing; 1.5 Book objectives; 2 Mixing fundamentals; 2.1 Introduction; 2.2 Defining mixing; 2.2.1 Macromixing; 2.2.2 Mesomixing; 2.2.3 Micromixing; 2.3 Scale of scrutiny; 2.4 Quantifying mixedness; 2.4.1 Inference of mixing indices; 2.5 Determining the end point of mixing; 2.5.1 Solids mixing 327 $a2.5.2 Fluid mixing2.5.3 Multi-phase mixing; 2.5.4 Alternative measures of mixedness in industrial practice; 2.6 Residence time distributions; 2.6.1 Modelling of residence time distributions; 3 Kinematics of flow and mixing mechanisms; 3.1 Introduction; 3.2 Fluid mixing; 3.2.1 Kinematics of fluid flow; 3.2.2 Quantification of flow regimes; 3.2.3 Chaotic advection; 3.2.4 Fluid mixing mechanisms; 3.3 Solids mixing; 3.3.1 Mixing flow in solids; 3.3.2 Solids mixing mechanism; 3.4 Identification of mixing mechanisms; 3.4.1 Solids; 3.4.2 Fluids; 4 Rheology and mixing; 4.1 Introduction 327 $a4.2 Dispersion rheology4.2.1 Forces acting on dispersed particles; 4.2.2 Parameters affecting suspension rheology; 4.3 Fluid rheology and mixing; 4.3.1 Shear flow; 4.3.2 Elongational flow; 4.4 Effects of mixing on fluid rheology; 4.5 Mixer rheometry; 4.5.1 Theory; 4.5.2 Mixer rheometry applications; 4.6 Conclusion; 5 Equipment design; 5.1 Introduction; 5.2 Liquid mixing equipment; 5.2.1 Portable mixers; 5.2.2 General purpose liquid mixers; 5.2.3 Mixer shafts design; 5.2.4 Other mechanical design considerations; 5.2.5 Special purpose liquid mixing equipment 327 $a5.2.6 Food specific mixing equipment5.3 Powder mixing equipment; 5.3.1 Ribbon blenders; 5.3.2 Paddle blenders; 5.3.3 Combination blenders; 5.3.4 Tumble blenders; 5.3.5 Loading and emptying blenders; 5.3.6 Liquid addition to powders; 5.3.7 Sampling; 5.3.8 Safety; 5.3.9 Blending systems; 5.4 Equipment components; 5.4.1 Electric motors; 5.4.2 Speed reducers; 5.4.3 Seals; 6 Mixing scale-up; 6.1 Introduction; 6.2 Scale-up for fluid mixing; 6.2.1 Dimensional analysis; 6.2.2 Scale-up with geometric similarity; 6.2.3 Scale-up without geometric similarity; 6.3 Scale-up for powder mixing 327 $a7 Monitoring and control of mixing operations7.1 Introduction; 7.2 Torque and power measurement; 7.3 Flow measurement; 7.3.1 Hot-wire anemometry; 7.3.2 Laser Doppler anemometry; 7.3.3 Phase Doppler anemometry; 7.3.4 Flow visualization using computer vision; 7.3.5 Particle image velocimetry; 7.3.6 Planar laser-induced fluorescence; 7.3.7 Tomography; 7.4 Quantification of mixing time; 7.4.1 NIR spectroscopy; 7.4.2 Chemical imaging; 8 Computational fluid mixing; 8.1 Introduction; 8.1.1 History of CFD; 8.1.2 Steps towards CFD simulation of mixing processes; 8.2 Conservation equations 327 $a8.2.1 Mass conservation 330 $aThe mixing of liquids, solids and gases is one of the most common unit operations in the food industry. Mixing increases the homogeneity of a system by reducing non-uniformity or gradients in composition, properties or temperature. Secondary objectives of mixing include control of rates of heat and mass transfer, reactions and structural changes. In food processing applications, additional mixing challenges include sanitary design, complex rheology, desire for continuous processing and the effects of mixing on final product texture and sensory profiles. Mixing ensures delivery of a product wi 606 $aFood industry and trade$xMathematical models 606 $aMixing$xMathematical models 606 $aFood mixes 615 0$aFood industry and trade$xMathematical models. 615 0$aMixing$xMathematical models. 615 0$aFood mixes. 676 $a664/.024 701 $aCullen$b P. J$g(Patrick J.)$0318457 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910877816903321 996 $aFood mixing$92226347 997 $aUNINA