LEADER 05308nam 2200661Ia 450 001 9910877122603321 005 20200520144314.0 010 $a1-282-69052-3 010 $a9786612690525 010 $a0-470-74085-X 010 $a0-470-74086-8 035 $a(CKB)1000000000716020 035 $a(EBL)416521 035 $a(OCoLC)476248663 035 $a(SSID)ssj0000253716 035 $a(PQKBManifestationID)11229140 035 $a(PQKBTitleCode)TC0000253716 035 $a(PQKBWorkID)10186900 035 $a(PQKB)11562570 035 $a(MiAaPQ)EBC416521 035 $a(EXLCZ)991000000000716020 100 $a20081016d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSuperbases for organic synthesis $eguanidines, amidines and phosphazenes and related organocatalysts /$feditor, Tsutomu Ishikawa 210 $aChichester, UK $cJohn Wiley & Sons$d2009 215 $a1 online resource (346 p.) 300 $aDescription based upon print version of record. 311 $a0-470-51800-6 320 $aIncludes bibliographical references and index. 327 $aSuperbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts; Contents; Preface; Acknowledgements; Contributors; 1. General Aspects of Organosuperbases; References; 2. Physico-Chemical Properties of Organosuperbases; 2.1 Introduction; 2.2 Proton Sponges; 2.2.1 'Classical' Proton Sponges; 2.2.2 Proton Sponges with Other Aromatic Backbones; 2.2.3 Polycyclic Proton Sponges; 2.3 Amidines; 2.4 Guanidines; 2.5 Phosphazenes; 2.6 Guanidinophosphazenes; 2.7 Other Phosphorus Containing Superbases : Verkade's Proazaphosp hatranes; 2.8 Theoretical Methods 327 $a2.9 Concluding RemarksReferences; 3. Amidines in Organic Synthesis; 3.1 Introduction; 3.2 Preparation of Amid ines; 3.2.1 Alkylation of Amidines; 3.2.2 Condensation of 1,2-Diamine; 3.2.3 Coupling of Imines (Isoamarine Synthesis); 3.2.4 Modification of Amide Derivatives; 3.2.5 Multi-Component Reaction; 3.2.6 Oxidative Amidination; 3.2.7 Oxidative Cyclization to Bisamidine; 3.2.8 Ring Opening of Aziridine; 3.3 Application of Amidines to Organic Synthesis; 3.3.1 Acetoxybromination; 3.3.2 Aldol -Like Reaction; 3.3.3 Azidation; 3.3.4 Aziridination; 3.3.5 Baylis-Hillman Reaction 327 $a3.3.6 Cycloaddition3.3.7 Dehydrohalogenation; 3.3.8 Deprotection; 3.3.9 Deprotonation; 3.3.10 Displacement Reaction; 3.3.11 Horner-Wadsworth-Emmons Reaction; 3.3.12 Intramolecular Cyclization; 3.3.13 Isomerization; 3.3.14 Metal -Mediated Reaction; 3.3.15 Michael Reaction; 3.3.16 Nef Reaction; 3.3.17 Nucleophilic Epoxidation; 3.3.18 Oxidation; 3.3.19 Pudovik-phospha-Brook Rearrangemen t; 3.3.20 [1,4]-Silyl Transfer; 3.3.21 Tandem Reaction; 3.4 Amidinium Salts: Design and Synthesi s; 3.4.1 Catalyst; 3.4.2 Molecular Recognition; 3.4.3 Reagent Source; 3.5 Concluding Remarks; References 327 $a4. Guanidines in Organic Synthesis4.1. Introduction; 4.2. Preparation of Chiral Guanidines; 4.2.1 Polysubstituted Acyclic and Monocyclic Guanidines; 4.2.2 Monosubstituted Guanidines (Guanidinylation); 4.2.3 Bicyclic Guanidines; 4.2.4 Preparation Based on DMC Chemistry; 4.3 Guanidines as Synthetic Tools; 4.3.1 Addition; 4.3.2 Substitution; 4.3.3 Others; 4.4 Guanidinium Salt; 4.4.1 Guanidinium Ylide; 4.4.2 Ionic Liquid; 4.4.3 Tetramethylguanidinium Azide (TMGA); 4.5 Concluding Remarks; References; 5. Phosphazene: Preparation, Reaction and Catalytic Role; 5.1 Introduction 327 $a5.2 Deprotonative Transformations Using Stoichiometric Phosphazenes5.2.1 Use of P1 Base; 5.2.2 Use of P2 Base; 5.2.3 Use of P4 Base; 5.2.4 Use of P5 Base; 5.3 Transformation Using Phosphazene Catalyst; 5.3.1 Addition of Nucleophiles to Alkyne; 5.3.2 Catalytic Activation of Silylated Nucleophiles; 5.4 Proazaphosphatrane Base (Verkade's Base); 5.4.1 Properties of Proazaphosphatrane; 5.4.2 Synthesis Using Proazphosphatrane; 5.5 Concluding Remarks; References; 6. Polymer-Supported Organosuperbases; 6.1 Introduction; 6.2 Acylation Reactions; 6.3 Alkylation Reactions; 6.4 Heterocyclization 327 $a6.5 Miscellaneous 330 $aGuanidines, amidines and phosphazenes have been attracting attention in organic synthesis due to their potential functionality resulting from their extremely strong basicity. They are also promising catalysts because of their potential for easy molecular modification, possible recyclability, and reduced or zero toxicity. Importantly, these molecules can be derived as natural products - valuable as scientists move towards "sustainable chemistry", where reagents and catalysts are derived from biomaterial sources. Superbases for Organic Synthesis is an essential guide to these important 606 $aAmidines 606 $aGuanidines 606 $aPhosphazo compounds 606 $aOrganic bases 615 0$aAmidines. 615 0$aGuanidines. 615 0$aPhosphazo compounds. 615 0$aOrganic bases. 676 $a541.395 676 $a547.2 700 $aIshikawa$b Tsutomu$01751512 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910877122603321 996 $aSuperbases for organic synthesis$94186500 997 $aUNINA