LEADER 02306nam 2200445Ia 450 001 9910877036303321 005 20200520144314.0 010 $a9780470611463 (e-book) 010 $a9781848210608 (hbk.) 035 $a(MiAaPQ)EBC477673 035 $a(CKB)2550000000005885 035 $a(EXLCZ)992550000000005885 100 $a20080408d2008 uy 0 101 0 $aeng 135 $aur|n|nnn||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aAdvanced mapping of environmental data $egeostatistics, machine learning, and Bayesian maximum entropy /$fedited by Mikhail Kanevski 210 $aLondon $cISTE, Ltd. ;$aHoboken, NJ $cJ. Wiley$dc2008 215 $a1 online resource (xiii, 313 p.) $cill 225 1 $aISTE ;$vv.62 320 $aIncludes bibliographical references and index. 327 $aChapter 1. Advanced Mapping of Environmental Data: Introduction -- Chapter 2. Environmental Monitoring Network Characterization and Clustering -- Chapter 3. Geostatistics: Spatial Predictions and Simulations -- Chapter 4. Spatial Data Analysis and Mapping Using Machine Learning Algorithms -- Chapter 5. Advanced Mapping of Environmental Spatial Data: Case Studies -- Chapter 6. Bayesian Maximum Entropy ? BME -- Index. 330 $aThis book combines geostatistics and global mapping systems to present an up-to-the-minute study of environmental data. Featuring numerous case studies, the reference covers model dependent (geostatistics) and data driven (machine learning algorithms) analysis techniques such as risk mapping, conditional stochastic simulations, descriptions of spatial uncertainty and variability, artificial neural networks (ANN) for spatial data, Bayesian maximum entropy (BME), and more. 410 0$aISTE. 606 $aGeology$xStatistical methods 606 $aMachine learning 606 $aBayesian statistical decision theory 615 0$aGeology$xStatistical methods. 615 0$aMachine learning. 615 0$aBayesian statistical decision theory. 676 $a550.1/519542 701 $aKanevski$b Mikhail$01763841 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910877036303321 996 $aAdvanced mapping of environmental data$94204475 997 $aUNINA