LEADER 05357nam 22006374a 450 001 9910876899003321 005 20200520144314.0 010 $a1-280-36702-4 010 $a9786610367023 010 $a0-470-35236-1 010 $a0-471-46183-0 010 $a0-471-23432-X 035 $a(CKB)111087027121360 035 $a(EBL)162759 035 $a(SSID)ssj0000167720 035 $a(PQKBManifestationID)11161498 035 $a(PQKBTitleCode)TC0000167720 035 $a(PQKBWorkID)10178814 035 $a(PQKB)11674240 035 $a(MiAaPQ)EBC162759 035 $a(OCoLC)85819972 035 $a(EXLCZ)99111087027121360 100 $a20011114d2003 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aHandbook of infrared spectroscopy of ultrathin films /$fValeri P. Tolstoy, Irina V. Chernyshova, Valeri A. Skryshevsky 210 $aHoboken, N.J. $cWiley-Interscience$dc2003 215 $a1 online resource (738 p.) 300 $aDescription based upon print version of record. 311 $a0-471-35404-X 320 $aIncludes bibliographical references and index. 327 $aHANDBOOK OF INFRARED SPECTROSCOPY OF ULTRATHIN FILMS; CONTENTS; Preface; Acronyms and Symbols; Introduction; 1 Absorption and Reflection of Infrared Radiation by Ultrathin Films; 1.1. Macroscopic Theory of Propagation of Electromagnetic Waves in Infinite Medium; 1.2. Modeling Optical Properties of a Material; 1.3. Classical Dispersion Models of Absorption; 1.4. Propagation of IR Radiation through Planar Interface between Two Isotropic Media; 1.4.1. Transparent Media; 1.4.2. General Case; 1.5. Reflection of Radiation at Planar Interface Covered by Single Layer 327 $a1.6. Transmission of Layer Located at Interface between Two Isotropic Semi-infinite Media1.7. System of Plane-Parallel Layers: Matrix Method; 1.8. Energy Absorption in Layered Media; 1.8.1. External Reflection: Transparent Substrates; 1.8.2. External Reflection: Metallic Substrates; 1.8.3. ATR; 1.9. Effective Medium Theory; 1.10. Diffuse Reflection and Transmission; Appendix; References; 2 Optimum Conditions for Recording Infrared Spectra of Ultrathin Films; 2.1. IR Transmission Spectra Obtained in Polarized Radiation; 2.2. IRRAS Spectra of Layers on Metallic Surfaces ("Metallic" IRRAS) 327 $a2.3. IRRAS of Layers on Semiconductors and Dielectrics2.3.1. Transparent and Weakly Absorbing Substrates ("Transparent" IRRAS); 2.3.2. Absorbing Substrates; 2.3.3. Buried Metal Layer Substrates (BML-IRRAS); 2.4. ATR Spectra; 2.5. IR Spectra of Layers Located at Interface; 2.5.1. Transmission; 2.5.2. Metallic IRRAS; 2.5.3. Transparent IRRAS; 2.5.4. ATR; 2.6. Choosing Appropriate IR Spectroscopic Method for Layer on Flat Surface; 2.7. Coatings on Powders, Fibers, and Matte Surfaces; 2.7.1. Transmission; 2.7.2. Diffuse Transmittance and Diffuse Reflectance; 2.7.3. ATR 327 $a2.7.4. Comparison of IR Spectroscopic Methods for Studying Ultrathin Films on PowdersReferences; 3 Interpretation of IR Spectra of Ultrathin Films; 3.1. Dependence of Transmission, ATR, and IRRAS Spectra of Ultrathin Films on Polarization (Berreman Effect); 3.2. Theory of Berreman Effect; 3.2.1. Surface Modes; 3.2.2. Modes in Ultrathin Films; 3.2.3. Identification of Berreman Effect in IR Spectra of Ultrathin Films; 3.3. Optical Effect: Film Thickness, Angle of Incidence, and Immersion; 3.3.1. Effect in "Metallic" IRRAS; 3.3.2. Effect in "Transparent" IRRAS; 3.3.3. Effect in ATR Spectra 327 $a3.3.4. Effect in Transmission Spectra3.4. Optical Effect: Band Shapes in IRRAS as Function of Optical Properties of Substrate; 3.5. Optical Property Gradients at Substrate-Layer Interface: Effect on Band Intensities in IRRAS; 3.6. Dipole-Dipole Coupling; 3.7. Specific Features in Potential-Difference IR Spectra of Electrode-Electrolyte Interfaces; 3.7.1. Absorption Due to Bulk Electrolyte; 3.7.2. (Re)organization of Electrolyte in DL; 3.7.3. Donation/Backdonation of Electrons; 3.7.4. Stark Effect; 3.7.5. Bipolar Bands; 3.7.6. Effect of Coadsorption; 3.7.7. Electronic Absorption 327 $a3.7.8. Optical Effects 330 $aBecause of the rapid increase in commercially available Fourier transform infrared spectrometers and computers over the past ten years, it has now become feasible to use IR spectrometry to characterize very thin films at extended interfaces. At the same time, interest in thin films has grown tremendously because of applications in microelectronics, sensors, catalysis, and nanotechnology. The Handbook of Infrared Spectroscopy of Ultrathin Films provides a practical guide to experimental methods, up-to-date theory, and considerable reference data, critical for scientists who want to measure and 606 $aThin films$xOptical properties 606 $aInfrared spectroscopy 615 0$aThin films$xOptical properties. 615 0$aInfrared spectroscopy. 676 $a621.3815/2 700 $aTolstoy$b Valeri P$01344845 701 $aChernyshova$b Irina V$01344846 701 $aSkryshevsky$b Valeri A$01344847 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910876899003321 996 $aHandbook of infrared spectroscopy of ultrathin films$93070164 997 $aUNINA