LEADER 05477nam 2200625 a 450 001 9910876891203321 005 20200520144314.0 010 $a1-118-47730-8 010 $a1-283-83523-1 010 $a1-118-47729-4 010 $a1-118-47727-8 035 $a(CKB)2670000000278968 035 $a(EBL)1068436 035 $a(OCoLC)822042024 035 $a(SSID)ssj0000754664 035 $a(PQKBManifestationID)11454025 035 $a(PQKBTitleCode)TC0000754664 035 $a(PQKBWorkID)10732880 035 $a(PQKB)10216827 035 $a(MiAaPQ)EBC1068436 035 $a(DLC) 2012032653 035 $a(EXLCZ)992670000000278968 100 $a20120809d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aUnderstanding distillation using column profile maps /$fDaniel Beneke ... [et al.] ; Centre of Material and Process Synthesis (COMPS), University of the Witwatersrand, Johannesburg, South Africa 210 $aHoboken, N.J. $cWiley$d2013 215 $a1 online resource (380 p.) 300 $aDescription based upon print version of record. 311 $a1-118-14540-2 320 $aIncludes bibliographical references and index. 327 $aUNDERSTANDING DISTILLATION USING COLUMN PROFILE MAPS; CONTENTS; PREFACE; NOMENCLATURE AND ABBREVIATIONS; ABOUT THE AUTHORS; 1 INTRODUCTION; 1.1 Context and Significance; 1.2 Important Distillation Concepts; 1.2.1 A Typical Column; 1.2.2 Complex Columns; 1.2.3 Vapor-Liquid Equilibrium; 1.3 Summary; References; 2 FUNDAMENTALS OF RESIDUE CURVE MAPS; 2.1 Introduction; 2.2 Batch Boiling; 2.3 The Mass Balance Triangle (MBT); 2.4 The Residue Curve Equation; 2.4.1 Derivation; 2.4.2 Approximation to Equilibrium; 2.5 Residue Curve Maps; 2.5.1 Constant Relative Volatility Systems; 2.5.2 Nonideal Systems 327 $a2.5.3 Numerical Integration2.6 Properties of Residue Curve Maps; 2.6.1 Separation Vector Field; 2.6.2 Stationary Points; 2.6.3 Isotherms; 2.6.4 Other Properties of RCMs; 2.7 Applicability of RCMs to Continuous Processes; 2.7.1 Total Reflux Columns; 2.7.2 Infinite Reflux Columns; 2.7.3 Bow-Tie Regions; 2.7.4 Column Sequencing at Infinite Reflux; 2.8 Limitations of RCMs; 2.8.1 Applications; 2.9 Residue Curve Maps: The Bigger Picture; 2.9.1 Extending the Axes; 2.9.2 Discontinuity; 2.9.3 Thermodynamic Models in Negative Space; 2.9.4 Use of Negative Compositions; 2.10 Summary; References 327 $a3 DERIVATION AND PROPERTIES OF COLUMN PROFILE MAPS3.1 Introduction; 3.2 The Column Section (CS); 3.3 The Difference Point Equation (DPE); 3.3.1 The Generalized CS; 3.3.2 Constant Molar Overflow; 3.3.3 Material Balances; 3.4 Column Profile Maps; 3.4.1 Constant Relative Volatility Systems; 3.4.2 Nonideal Systems; 3.5 The Effect of CPM Parameters; 3.5.1 The Net Flow (?); 3.5.2 The Difference Point (X?); 3.5.2.1 X? in CSs with Condensers/ Reboilers; 3.5.2.2 X? in General CSs; 3.5.2.3 Individual Component Flows; 3.5.3 The Reflux Ratio (R?); 3.6 Properties of Column Profile Maps 327 $a3.6.1 The Relationship Between RCMs and CPMs3.6.2 Vector Fields; 3.6.3 Pinch Points; 3.6.4 Isotherms; 3.6.5 Transformed Triangles; 3.7 Pinch Point Loci; 3.7.1 Analytical Solutions; 3.7.2 Graphical Approach; 3.8 Some Mathematical Aspects of CPMs; 3.8.1 Eigenvalues and Eigenvectors; 3.8.2 Nature of Pinch Points; 3.9 Some Insights and Applications of CPMs; 3.9.1 Column Stability; 3.9.2 Node Placement; 3.9.3 Sharp Splits; 3.10 Summary; References; 4 EXPERIMENTAL MEASUREMENT OF COLUMN PROFILES; 4.1 Introduction; 4.2 The Rectifying Column Section; 4.2.1 The Batch Analogy 327 $a4.2.2 Experimental Setup and Procedure4.2.2.1 Distillate Addition; 4.2.2.2 Apparatus; 4.2.3 Experimental Results; 4.2.3.1 Stable Node; 4.2.3.2 Saddle Point; 4.3 The Stripping Column Section; 4.4 Validation of Thermodynamic Models; 4.5 Continuous Column Sections; 4.5.1 Apparatus; 4.5.1.1 Column Shell and Packing; 4.5.1.2 Vapor Feed; 4.5.1.3 Liquid Feed; 4.5.1.4 Vapor Exit; 4.5.1.5 Liquid Exit; 4.5.1.6 Sampling Equipment; 4.5.2 Experimental Results; 4.5.3 Temperature Inversion; 4.6 Summary; References; 5 DESIGN OF SIMPLE COLUMNS USING COLUMN PROFILE MAPS; 5.1 Introduction 327 $a5.2 Absorbers and Strippers 330 $a Researchers share their pioneering graphical method for designing almost any distillation structure Developed by the authors in collaboration with other researchers at the Centre of Material and Process Synthesis, column profile maps (CPMs) enable chemical engineers to design almost any distillation structure using novel graphical techniques. The CPM method offers tremendous advantages over other design methods because it is generalized and not constrained to a particular piece of equipment. Understanding Distillation Using Column Profile Maps enables readers to un 606 $aDistillation$xSimulation methods 606 $aDistillation apparatus$xDesign and construction 615 0$aDistillation$xSimulation methods. 615 0$aDistillation apparatus$xDesign and construction. 676 $a660/.28425 700 $aBeneke$b Daniel$f1985-$01757301 712 02$aUniversity of the Witwatersrand.$bCentre of Material and Process Synthesis. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910876891203321 996 $aUnderstanding distillation using column profile maps$94195120 997 $aUNINA