LEADER 02357nam 2200565 a 450 001 9910876767703321 005 20200520144314.0 010 $a1-118-60024-X 010 $a1-118-60023-1 010 $a1-299-18744-7 010 $a1-118-60019-3 035 $a(CKB)2670000000333521 035 $a(EBL)1120647 035 $a(OCoLC)828299067 035 $a(SSID)ssj0001034478 035 $a(PQKBManifestationID)11975736 035 $a(PQKBTitleCode)TC0001034478 035 $a(PQKBWorkID)11014852 035 $a(PQKB)10258836 035 $a(MiAaPQ)EBC1120647 035 $a(EXLCZ)992670000000333521 100 $a20130301d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aConcepts of combinatorial optimization /$fedited by Vangelis Th. Paschos 210 $aLondon $cISTE ;$aHoboken, N.J. $cWiley$d2010 215 $a1 online resource (382 p.) 225 0$aCombinatorial optimization ;$vv. 1 300 $aDescription based upon print version of record. 311 $a1-84821-147-3 320 $aIncludes bibliographical references and index. 327 $apt. I. Complexity of combinatorial optimization problems -- pt. II. Classical solution methods -- pt. III. Elements from mathematical programming. 330 $aCombinatorial optimization is a multidisciplinary scientific area, lying in the interface of three major scientific domains: mathematics, theoretical computer science and management. The three volumes of the Combinatorial Optimization series aims to cover a wide range of topics in this area. These topics also deal with fundamental notions and approaches as with several classical applications of combinatorial optimization. Concepts of Combinatorial Optimization, is divided into three parts:On the complexity of combinatorial optimization problems, that presents basics a 410 0$aISTE 606 $aCombinatorial optimization 606 $aProgramming (Mathematics) 615 0$aCombinatorial optimization. 615 0$aProgramming (Mathematics) 676 $a519.6/4 701 $aPaschos$b Vangelis Th$0944252 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910876767703321 996 $aConcepts of combinatorial optimization$94188489 997 $aUNINA