LEADER 03073nam 2200577z 450 001 9910876659403321 005 20240625215630.0 010 $a9781119425755 010 $a1119425751 010 $a9781119425717 010 $a1119425719 010 $a9781119425762 010 $a111942576X 024 7 $a10.1002/9781119425762 035 $a(CKB)4100000010870875 035 $a(MiAaPQ)EBC6199840 035 $a(JP-MeL)3000110882 035 $a(NjHacI)994100000010870875 035 $a(OCoLC)1156321092 035 $a(Perlego)1485154 035 $a(EXLCZ)994100000010870875 100 $a20220719d ||| || 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aFundamentals of numerical mathematics for physicists and engineers /$fAlvaro Meseguer 210 $aHoboken, N.J.$cWiley$d2020 210 1$aHoboken, N.J. :$cWiley,$d2020. 215 $a1 online resource (403 pages) 300 $aIncludes bibliographical references (p. 369-371) and index 311 08$a9781119425670 311 08$a1119425670 320 $aIncludes bibliographical references (pages 369-371) and index. 327 $aSolution methods for scalar nonlinear equations -- Polynomial interpolation -- Numerical differentiation -- Numerical integration -- Numerical linear algebra -- Systems of nonlinear equations -- Numerical fourier analysis -- Ordinary differential equations. 330 $a"This book helps readers understand the mathematical and algorithmic elements that lie beneath numerical and computational methodologies in order to determine the suitability of certain methods for solving a given problem. This book is broken into two parts. Part I addresses the root finding of univariate trascendental equations, polynomial interpolation, numerical differentiation and numerical integration. Part II addresses slightly more advanced topics such as introductory numerical linear algebra, parameter dependent systems of nonlinear equations, approximation theory and ordinary differential equations (initial value problems and univariate boundary value problems). This book contains examples related to problems in classical mechanics, thermodynamics, electromagnetism and quantum physics. The author discusses Bisection method, computational cost, Barycentric interpolatory formula, Fixed point iteration method, and Linear Multistep Formulas (LMSF). Each section concludes with Matlab practicals and problem and exercise sets"--$cProvided by publisher. 606 $6880-03/$1$aNumerical analysis 606 $6880-04/$1$aMathematical physics 606 $6880-05/$1$aEngineering mathematics 615 0$aNumerical analysis 615 0$aMathematical physics 615 0$aEngineering mathematics 676 $a519.4 686 $a418.1$2njb/09 686 $a518$2njb/09 801 1$bJP-MeL 906 $aBOOK 912 $a9910876659403321 996 $aFundamentals of numerical mathematics for physicists and engineers$94192709 997 $aUNINA