LEADER 03501nam 22004935 450 001 9910874680103321 005 20260119124030.0 010 $a9783031600579 024 7 $a10.1007/978-3-031-60057-9 035 $a(CKB)32970616400041 035 $a(MiAaPQ)EBC31529333 035 $a(Au-PeEL)EBL31529333 035 $a(DE-He213)978-3-031-60057-9 035 $a(EXLCZ)9932970616400041 100 $a20240716d2024 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMonotone Nonautonomous Dynamical Systems /$fby David N. Cheban 205 $a1st ed. 2024. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2024. 215 $a1 online resource (475 pages) 311 08$a9783031600562 327 $aPoisson Stable Motions of Dynamical Systems -- Compact Global Attractors -- V-Monotone Nonautonomous Dynamical Systems -- Poisson Stable Motions and Global Attractors of Monotone Nonautonomous Dynamical Systems. 330 $aThe monograph present ideas and methods, developed by the author, to solve the problem of existence of Bohr/Levitan almost periodic (respectively, almost recurrent in the sense of Bebutov, almost authomorphic, Poisson stable) solutions and global attractors of monotone nonautonomous differential/difference equations. Namely, the text provides answers to the following problems: 1. Problem of existence of at least one Bohr/Levitan almost periodic solution for cooperative almost periodic differential/difference equations; 2.?Problem of existence of at least one Bohr/Levitan almost periodic solution for uniformly stable and dissipative monotone differential equations (I. U. Bronshtein?s conjecture, 1975); 3.?Problem of description of the structure of the global attractor for monotone nonautonomous dynamical systems; ? 4.?The structure of the invariant/minimal sets and global attractors for one-dimensional monotone nonautonomous dynamical systems; ? 5.?Asymptotic behavior of monotone nonautonomous dynamical systems with a ?rst integral (Poisson stable motions, convergence, asymptotically Poisson stable motions and structure of the Levinson center (compact global attractor) of dissipative systems); 6. Existence and convergence to Poisson stable motions of monotone sub-linear nonautonomous dynamical systems. This book will be interesting to the mathematical community working in the field of nonautonomous dynamical systems and their applications (population dynamics, oscillation theory, ecology, epidemiology, economics, biochemistry etc). The book should be accessible to graduate and PhD? students who took courses in real analysis (including the elements of functional analysis, general topology) and with general background in dynamical systems and qualitative theory of differential/difference equations. . 606 $aDynamics 606 $aDynamical Systems 606 $aOperadors monòtons$2thub 606 $aSistemes dinàmics diferenciables$2thub 608 $aLlibres electrònics$2thub 615 0$aDynamics. 615 14$aDynamical Systems. 615 7$aOperadors monòtons 615 7$aSistemes dinàmics diferenciables. 676 $a515.39 700 $aCheban$b David N$0923903 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910874680103321 996 $aMonotone Nonautonomous Dynamical Systems$94183290 997 $aUNINA