LEADER 03634nam 22005895 450 001 9910874676303321 005 20251217151850.0 010 $a9783031541230$b(electronic bk.) 010 $z9783031541216 024 7 $a10.1007/978-3-031-54123-0 035 $a(MiAaPQ)EBC31528790 035 $a(Au-PeEL)EBL31528790 035 $a(CKB)32874743000041 035 $a(DE-He213)978-3-031-54123-0 035 $a(EXLCZ)9932874743000041 100 $a20240714d2024 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aElliptic Equations: An Introductory Course /$fby Michel Chipot 205 $a2nd ed. 2024. 210 1$aCham :$cSpringer International Publishing :$cImprint: Birkhäuser,$d2024. 215 $a1 online resource (393 pages) 225 1 $aBirkhäuser Advanced Texts Basler Lehrbücher,$x2296-4894 311 08$aPrint version: Chipot, Michel Elliptic Equations: an Introductory Course Cham : Springer International Publishing AG,c2024 9783031541216 320 $aIncludes bibliographical references and index. 327 $aPart I Basic Techniques -- Hilbert Space Techniques -- A Survey of Essential Analysis -- Weak Formulation of Elliptic Problems -- Elliptic Problems in Divergence Form -- Singular Perturbation Problems -- Problems in Large Cylinders -- Periodic Problems -- Homogenization -- Eigenvalues -- Numerical Computations -- Part II More Advanced Theory -- Nonlinear Problems -- L?-estimates -- Linear Elliptic Systems -- The Stationary Navier--Stokes System -- Some More Spaces -- Regularity Theory -- p-Laplace Type Equations -- The Strong Maximum Principle -- Problems in the Whole Space -- Large Solutions -- Mountain Pass Techniques. 330 $aThe aim of this book is to introduce the reader to different topics of the theory of elliptic partial differential equations by avoiding technicalities and complicated refinements. Apart from the basic theory of equations in divergence form, it includes subjects as singular perturbations, homogenization, computations, asymptotic behavior of problems in cylinders, elliptic systems, nonlinear problems, regularity theory, Navier-Stokes systems, p-Laplace type operators, large solutions, and mountain pass techniques. Just a minimum on Sobolev spaces has been introduced and work on integration on the boundary has been carefully avoided to keep the reader attention focused on the beauty and variety of these issues. The chapters are relatively independent of each other and can be read or taught separately. Numerous results presented here are original, and have not been published elsewhere. The book will be of interest to graduate students and researchers specializing in partial differential equations. 410 0$aBirkhäuser Advanced Texts Basler Lehrbücher,$x2296-4894 606 $aMathematical analysis 606 $aAnalysis 606 $aAnalysis 606 $aEquacions diferencials el·líptiques$2thub 606 $aEquacions de Navier-Stokes$2thub 606 $aEspais de Sobolev$2thub 608 $aLlibres electrònics$2thub 615 0$aMathematical analysis. 615 14$aAnalysis. 615 24$aAnalysis. 615 7$aEquacions diferencials el·líptiques 615 7$aEquacions de Navier-Stokes 615 7$aEspais de Sobolev 676 $a515.3533 700 $aChipot$b M$g(Michel),$0441752 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910874676303321 996 $aElliptic Equations: An Introductory Course$94255913 997 $aUNINA