LEADER 03605nam 22005415 450 001 9910874664503321 005 20240721125229.0 010 $a9783031565007$b(electronic bk.) 010 $z9783031564994 024 7 $a10.1007/978-3-031-56500-7 035 $a(MiAaPQ)EBC31539088 035 $a(Au-PeEL)EBL31539088 035 $a(CKB)33109639800041 035 $a(MiAaPQ)EBC31539866 035 $a(Au-PeEL)EBL31539866 035 $a(DE-He213)978-3-031-56500-7 035 $a(EXLCZ)9933109639800041 100 $a20240721d2024 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFundamentals of Fourier Analysis /$fby Loukas Grafakos 205 $a1st ed. 2024. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2024. 215 $a1 online resource (416 pages) 225 1 $aGraduate Texts in Mathematics,$x2197-5612 ;$v302 311 08$aPrint version: Grafakos, Loukas Fundamentals of Fourier Analysis Cham : Springer International Publishing AG,c2024 9783031564994 327 $a1 Introductory Material -- 2 Fourier Transforms, Tempered Distributions, Approximate Identities -- 3 Singular Integrals -- 4 Vector-Valued Singular Integrals and Littlewood?Paley Theory -- 5 Fractional Integrability or Differentiability and Multiplier Theorems -- 6 Bounded Mean Oscillation -- 7 Hardy Spaces -- 8 Weighted Inequalities -- Historical Notes -- Appendix A Orthogonal Matrices -- Appendix B Subharmonic Functions -- Appendix C Poisson Kernel on the Unit Strip -- Appendix D Density for Subadditive Operators -- Appendix E Transposes and Adjoints of Linear Operators -- Appendix F Faa di Bruno Formula -- Appendix G Besicovitch Covering Lemma -- Glossary -- References -- Index. 330 $aThis self-contained text introduces Euclidean Fourier Analysis to graduate students who have completed courses in Real Analysis and Complex Variables. It provides sufficient content for a two course sequence in Fourier Analysis or Harmonic Analysis at the graduate level. In true pedagogical spirit, each chapter presents a valuable selection of exercises with targeted hints that will assist the reader in the development of research skills. Proofs are presented with care and attention to detail. Examples are provided to enrich understanding and improve overall comprehension of the material. Carefully drawn illustrations build intuition in the proofs. Appendices contain background material for those that need to review key concepts. Compared with the author?s other GTM volumes (Classical Fourier Analysis and Modern Fourier Analysis), this text offers a more classroom-friendly approach as it contains shorter sections, more refined proofs, and a wider range of exercises. Topics include the Fourier Transform, Multipliers, Singular Integrals, Littlewood?Paley Theory, BMO, Hardy Spaces, and Weighted Estimates, and can be easily covered within two semesters. 410 0$aGraduate Texts in Mathematics,$x2197-5612 ;$v302 606 $aFourier analysis 606 $aHarmonic analysis 606 $aFourier Analysis 606 $aAbstract Harmonic Analysis 615 0$aFourier analysis. 615 0$aHarmonic analysis. 615 14$aFourier Analysis. 615 24$aAbstract Harmonic Analysis. 676 $a515.2433 700 $aGrafakos$b Loukas$0298204 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910874664503321 996 $aFundamentals of Fourier Analysis$94183629 997 $aUNINA