LEADER 05530nam 2200709Ia 450 001 9910144279303321 005 20170814180809.0 010 $a1-281-76408-6 010 $a9786611764081 010 $a3-527-61314-5 010 $a3-527-61315-3 035 $a(CKB)1000000000376629 035 $a(EBL)481354 035 $a(OCoLC)261224704 035 $a(SSID)ssj0000121591 035 $a(PQKBManifestationID)11922687 035 $a(PQKBTitleCode)TC0000121591 035 $a(PQKBWorkID)10110488 035 $a(PQKB)11051212 035 $a(SSID)ssj0001686769 035 $a(PQKBManifestationID)16524968 035 $a(PQKBTitleCode)TC0001686769 035 $a(PQKBWorkID)15051843 035 $a(PQKB)11446094 035 $a(MiAaPQ)EBC481354 035 $a(EXLCZ)991000000000376629 100 $a20001129d2000 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aChiral catalyst immobilization and recycling$b[electronic resource] /$fedited by D.E. De Vos, I.F.J. Vankelecom, P.A. Jacobs 210 $aWeinheim ;$aNew York $cWiley-VCH$dc2000 215 $a1 online resource (342 p.) 300 $aDescription based upon print version of record. 311 $a3-527-29952-1 320 $aIncludes bibliographical references and index. 327 $aChiral Catalvst Immobilization and Recycling; Contents; 1 Enantioselective Heterogeneous Catalysis: Academic and Industrial Challenges; 1.1 Introduction; 1.2 The Industrial Process in General and the Specific Prerequisites for Chiral Catalysts; 1. 2.1 Characteristics of the Manufacture of Enantiomerically Pure Products; 1.2.2 Process Development: Critical Factors for the Application of (Heterogeneous) Enantioselective Catalysts; 1. 2.3 Important Criteria for Enantioselective Catalysts; 1.3 The General Challenges; 1.3.1 For Academia; 1.3.2 For Industry 327 $a1.4 Chiral Heterogeneous Catalysts: State of the Art and Future Challenges1.4.1 Heterogeneous Catalysts Modified with a Chiral Auxiliary; 1.4.1.1 Metallic Catalysts on Chiral Supports; 1.4.1.2 Metallic Catalysts Modified with a Low Molecular Weight Chiral Auxiliary; 1.4.1.3 Metal Oxide Catalysts Modified with a Chiral Auxiliary having Low Molecular Weight; 1.4.2 Immobilized and Functionalized Homogeneous Catalysts; 1.4.2.1 lmmobilized Homogeneous Catalysts; 1.4.2.2 Alternative Methods Using Functionalized Ligands; 1.4.3 Catalysts with No Known Heterogeneous or Homogeneous Precedent 327 $a1.4.3.1 Insoluble Polypeptides and Gels1.4.3.2 Artificial Catalytic Antibodies; 1.5 Conclusions; References; 2 Catalyst Immobilization on Inorganic Supports; 2.1 Introduction; 2.2 General Considerations; 2.3 Supports; 2.4 Improved Activity of Heterogeneous Complexes; 2.5 Practical Examples; 2.5.1 Covalent Attachment; 2.5.2 Adsorption or Ion-Pair Formation; 2.5.3 Encapsutation; 2.5.4 Entrapment; 2.5.5 Supported Liquid Phase (SLP); 2.5.6 Modification of an Achiral Heterogeneous Catalyst with a Chiral Auxiliary; 2.5.7 Achiral Metal Catalysts on Chiral Supports; References 327 $a3 Organic Polymers as a Catalyst Recovery Vehicle3.1 General Introduction; 3.2 Alkene Hydrogenation; 3.3 Carbonyl and Imine Reduction; 3.4 Carbon-Carbon Bond Formation; 3.5 Carbonyl Alkylation; 3.6 Diels-Alder Reactions; 3.7 Enolate Chemistry; 3.8 Strecker Chemistry; 3.9 Asymmetric Dihydroxylation; 3.10 Epoxidation and Epoxide Ring Opening; 3.11 Acylation Catalysts; 3.12 Conclusion; References; 4 Liquid Biphasic Enantioselective Catalysis; 4.1 Introduction; 4.2 Hydrogenation; 4.3 Hydroformylation; 4.4 Oxidation; 4.5 Lewis Acid-Catalyzed Reactions; 4.6 Enzymatic Reactions; 4.7 Summary 327 $aReferences5 Immobilized Enzymes in Enantioselective Organic Synthesis; 5.1 Introduction; 5.2 Immobilization; 5.2.1 Methods of Immobilization; 5.2.1.1 Enzymes; 5.2.1.2 Carriers; 5.2.1.3 Binding Enzymes to Carriers; 5.2.1.4 Cross-Linked Enzyme Crystals; 5.2.2 Activity Assay; 5.2.3 Activity Balance; 5.2.4 Cost of Immobilization; 5.3 Operation; 5.3.1 Reactors; 5.3.2 Operational Stability; 5.4 Summary; References; 6 Enantioselective Hydrogenation Catalyzed by Platinum Group Metals Modified by Natural Alkaloids; 6.1 Historical Perspective 327 $a6.2 Enantioselective Hydrogenation of Activated Ketones over Platinum 330 $aHomogeneous asymmetric catalysis offers reliable results and the possibility to 'tune' the catalysis on a rational basis. A pitfall, however, is that the separation of the catalyst from the starting material and products is difficult and often results in the loss of the catalytic material.Immobilization offers a potential solution for the user of enantioselective catalysts in industrial processes and laboratories. Heterogeneous catalysis allows continuous operations, recycling of the catalyst, and an easy separation of the reaction products, reducing both waste and costs.Chemis 606 $aEnantioselective catalysis 606 $aCatalysts 608 $aElectronic books. 615 0$aEnantioselective catalysis. 615 0$aCatalysts. 676 $a541.395 676 $a547.1395 701 $aVos$b D. E. de$g(Dirk E.)$0924943 701 $aVankelecom$b I. F. J$g(Ivo F. J.)$0924944 701 $aJacobs$b Peter A$020054 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910144279303321 996 $aChiral catalyst immobilization and recycling$92075990 997 $aUNINA LEADER 02880nam 22006615 450 001 9910873964303321 005 20241212213823.0 010 $a9781523154807 010 $a1523154802 010 $a9783800756889 010 $a3800756889 035 $a(CKB)4100000012774499 035 $a61c2dc9f-a09c-49c1-8cab-4796b0dd2d03 035 $a(EXLCZ)994100000012774499 100 $a20211124d2021 ||| | 101 0 $aeng 135 $auruuu---uuuuu 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aITG-Fb. 300: WSA 2021 $e25th International ITG Workshop on Smart Antennas 10-12 November 2021, French Riviera, Hybrid Event 205 $aNeuerscheinung 210 31$aBerlin$cVDE Verlag$d2021 215 $aOnline-Ressource (475 S.) 225 0 $aITG-Fachberichte 300 $aPublication Date: 24 November 2021. 311 08$a9783800756865 311 08$a3800756862 330 $aPresentations and discussion on research results on smart antennas, spanning theoretical analyses as well as technical and implementation aspects, in modern wireless communications. Topics of interest includes: - Massive MIMO and Beyond - Network/Distributed MIMO - Multicell Systems and Interference - Beamforming Techniques - Cloud Radio Access Networks - Millimetre Wave and Terahertz Communication - Ultra-Low Latency Communication - Channel Modelling and Estimation - Compressive Sensing and Sparse Processing - Machine Learning for PHY/MAC Design - Multi-antenna Techniques and Security - MIMO Radar and Multi-sensor Processing - Joint Communication and Sensing - Cooperative and Sensor Networks - Device-to-Device Communication - Vehicular Communication - Uncoordinated and Massive Access - Localization - Field Trials and Demonstrators. 606 $aMachine learning$vCongresses 606 $aWireless communication systems$vCongresses 606 $aBeamforming 606 $aSmart Antennas 606 $aWireless sensor networks 606 $aChannel Modelling 606 $aCloud Radio Access Networks 606 $aC-RAN (Cloud-RAN) 606 $aCentralized-RAN 606 $aMassive/Full-Dimension MIMO 606 $aNetwork/Distributed MIMO 606 $aUltra-Low Latency Communications 615 0$aMachine learning 615 0$aWireless communication systems 615 0$aBeamforming. 615 4$aSmart Antennas 615 0$aWireless sensor networks. 615 4$aChannel Modelling 615 4$aCloud Radio Access Networks 615 4$aC-RAN (Cloud-RAN) 615 4$aCentralized-RAN 615 4$aMassive/Full-Dimension MIMO 615 4$aNetwork/Distributed MIMO 615 4$aUltra-Low Latency Communications 702 $aVDE ITG$4edt 906 $aPROCEEDING 912 $a9910873964303321 996 $aITG-Fb. 300: WSA 2021$93884081 997 $aUNINA