LEADER 00780nam0-22002891i-450 001 990001747940403321 005 20191029152804.0 035 $a000174794 035 $aFED01000174794 035 $a(Aleph)000174794FED01 035 $a000174794 100 $a20030910d1990----km-y0itay50------ba 101 0 $aita 102 $aIT 200 1 $aAnnuario delle Università europee$fa cura di Pier Angelo Mori 210 $aMilano$cBiblioteche$d1990 215 $a286 p.$d30 cm 610 0 $aUniversità 676 $a378.155 702 1$aMori,$bAngelo 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990001747940403321 952 $a60 378.155 MORP 1990$b2535$fFAGBC 959 $aFAGBC 996 $aAnnuario delle Università europee$9365650 997 $aUNINA LEADER 01341nas 2200421-a 450 001 996335910703316 005 20240413024725.0 035 $a(CKB)110979839331403 035 $a(CONSER)cn-98300356- 035 $a(EXLCZ)99110979839331403 100 $a19980506a19979999 --- a 101 0 $aeng 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aCanadian Mennonite 210 $a[Waterloo, Ont.] $cMennonite Pub. Service$d1997- 215 $a1 online resource 300 $aTitle from cover. 311 08$aPrint version: Canadian Mennonite (Waterloo, Ont.) 1480-042X (DLC)cn 98300356 (OCoLC)1082479033 531 0 $aCan. Mennon. 606 $aMennonites$zCanada$xPériodiques 606 $aMennonites$zCanada$xPeriodicals 606 $aMennonites$2fast$3(OCoLC)fst01016181 606 $aDoopsgezinden$2gtt 607 $aCanada$2fast$1https://id.oclc.org/worldcat/entity/E39PBJkMHVW4rfVXPrhVP4VwG3 608 $aPeriodicals.$2fast 615 6$aMennonites$xPériodiques. 615 0$aMennonites$xPeriodicals. 615 7$aMennonites. 615 17$aDoopsgezinden. 676 $a289.7/71/05 686 $acci1icc$2lacc 906 $aNEWSPAPER 912 $a996335910703316 920 $aexl_impl conversion 996 $aCanadian Mennonite$92418225 997 $aUNISA LEADER 06546nam 22006015 450 001 9910872199103321 005 20241120175051.0 010 $a9789819742240 010 $a9819742242 024 7 $a10.1007/978-981-97-4224-0 035 $a(CKB)32822198100041 035 $a(MiAaPQ)EBC31520063 035 $a(Au-PeEL)EBL31520063 035 $a(DE-He213)978-981-97-4224-0 035 $a(OCoLC)1446382291 035 $a(EXLCZ)9932822198100041 100 $a20240704d2024 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aRecent Development of Alternating Current Field Measurement Combine with New Technology /$fby Xin'an Yuan, Wei Li, Jianming Zhao, Xiaokang Yin, Xiao Li, Jianchao Zhao 205 $a1st ed. 2024. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2024. 215 $a1 online resource (152 pages) 311 08$a9789819742233 311 08$a9819742234 327 $aIntro -- Preface -- Contents -- High Sensitivity Rotating Alternating Current Field Measurement for Arbitrary-Angle Underwater Cracks -- 1 Introduction -- 2 Induced Rotating Alternating Current Field -- 2.1 RACFM Theoretical Model -- 2.2 FEM Modeling and Analyzing -- 3 RACFM System for Arbitrary-Angle Cracks Measurement -- 3.1 RACFM System -- 3.2 RACFM Probe -- 3.3 RACFM Waterproof Shell -- 4 RACFM System Testing and Discussing -- 4.1 Experiment System -- 4.2 Discussion -- 5 Conclusion -- References -- Detection of Cracks in Metallic Objects by Arbitrary Scanning Direction Using a Double U-Shaped Orthogonal ACFM Probe -- 1 Introduction -- 2 FEM Model of Double U-Shaped Orthogonal ACFM Probe -- 3 Cracks Detection Experiments -- 4 Conclusion -- References -- A Novel Fatigue Crack Angle Quantitative Monitoring Method Based on Rotating Alternating Current Field Measurement -- 1 Introduction -- 2 Theoretical Model -- 3 Finite Element Analysis -- 3.1 Model Set Up -- 3.2 Characteristic Signal Analysis of Cracks with Different Angles -- 3.3 Characteristic Signal Analysis of Cracks with Different Lengths and Depths -- 4 Experimental Setup and Result -- 4.1 Probe and System Setup -- 4.2 Crack Length Monitoring -- 4.3 Crack Depth Monitoring -- 4.4 Modification of the Measured Angle of the Crack -- 5 Conclusions and Further Work -- References -- Inspection of Both Inner and Outer Cracks in Aluminum Tubes Using Double Frequency Circumferential Current Field Testing Method -- 1 Introduction -- 2 Finite Element Method Model -- 2.1 Simulation Model -- 2.2 High Frequency Excitation Signal -- 2.3 Low Frequency Excitation Signal -- 3 Testing System -- 3.1 Probe with Sensor Arrays -- 3.2 Testing System -- 4 Inspection of Inner and Outer Cracks -- 4.1 Specimen -- 4.2 Inspection of Different Depth Cracks -- 4.3 Inspection of Different Length Cracks. 327 $a5 Conclusions and Further Work -- References -- Novel Phase Reversal Feature for Inspection of Cracks Using Multi-frequency Alternating Current Field Measurement Technique -- 1 Introduction -- 2 Methodology -- 3 Multi-frequency ACFM Testing System -- 4 Experiment -- 5 Conclusion -- References -- Visual Reconstruction of Irregular Crack in Austenitic Stainless Steel Based on ACFM Technique -- 1 Introduction -- 2 An Irregular Crack Simulation Model -- 2.1 Simulation Model -- 2.2 Simulation Analysis of Electromagnetic Field -- 3 Visualization Reconstruction Method -- 3.1 Gradient Field Algorithm -- 3.2 Simulation Results Visualization Refactoring -- 4 Experimental Verification -- 4.1 Test System Construction -- 4.2 Experimental Test -- 4.3 Reconstruction Accuracy Evaluation -- 5 Conclusions -- References -- Visual ACFM System Modeling and Optimization for Accurate Measurement of Underwater Cracks -- 1 Introduction -- 2 Underwater VACFM -- 3 Analysis and Optimization for Probe Parameters -- 3.1 Model Development in ANSYS -- 3.2 Excitation Currents -- 3.3 Fix Structure Lift-Off -- 3.4 Probe Structure -- 4 System Performance Testing -- 4.1 Experimental System -- 4.2 Accurate Measurements -- 4.3 Results and Discussion -- 5 Design Summary and Conclusion -- References -- Research on High-Precision Evaluation of Crack Dimensions and Profiles Methods for Underwater Structure Based on ACFM Technique -- 1 Introduction -- 2 Marine Environment ACFM Simulation Model -- 3 Two-Step Interpolation Algorithm -- 4 Establishment of the Experimental System -- 5 Crack Evaluation Test -- 5.1 Crack Size Evaluation -- 5.2 Crack Profile Evaluation -- 6 Conclusion -- References. 330 $aThis open access book can be divided into three parts. In part 1, three articles are employed to introduce the RACFM technology. In part 2, two articles are introduced to explain the Multifrequency ACFM. In part 3, three articles are introduced to explain the visualization research in ACFM. With the development of ACFM detection technology, traditional single excitation frequency and single direction excitation structures cannot meet the requirements of multiple types of defect detection (such as cracks at different angles, and buried defects). New types of excitation structures and methods have been proposed, mainly including rotating electromagnetic field detection, multi-frequency detection, and defects visual algorithm. The changes in the excitation structure and signal mentioned above have expanded the scope of application of ACFM detection and provided opportunities for the cross-integration and innovation of ACFM detection technology with other advanced detection methods. This book mainly focuses on the study of the rotating alternating current field measurement (RACFM), the multifrequency ACFM, and the visualization method in ACFM. 606 $aEngineering geology 606 $aPetrology 606 $aGeoengineering 606 $aPetrology 615 0$aEngineering geology. 615 0$aPetrology. 615 14$aGeoengineering. 615 24$aPetrology. 676 $a624.15 700 $aYuan$b Xin'an$01764810 701 $aLi$b Wei$0721674 701 $aZhao$b Jianming$01764811 701 $aYin$b Xiaokang$01764812 701 $aLi$b Xiao$0648571 701 $aZhao$b Jianchao$01764813 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910872199103321 996 $aRecent Development of Alternating Current Field Measurement Combine with New Technology$94205977 997 $aUNINA