LEADER 03925nam 22007215 450 001 9910869180003321 005 20250728141942.0 010 $a9783031599002 024 7 $a10.1007/978-3-031-59900-2 035 $a(CKB)32609603300041 035 $a(MiAaPQ)EBC31520038 035 $a(Au-PeEL)EBL31520038 035 $a(DE-He213)978-3-031-59900-2 035 $a(EXLCZ)9932609603300041 100 $a20240630d2024 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aPercolation Theory Using Python /$fby Anders Malthe-Sørenssen 205 $a1st ed. 2024. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2024. 215 $a1 online resource (221 pages) 225 1 $aLecture Notes in Physics,$x1616-6361 ;$v1029 311 08$a9783031598999 327 $aIntroduction to Percolation -- One-dimensional Percolation -- Infinite-dimensional Percolation -- Finite-dimensional Percolation -- Geometry of Clusters -- Finite Size Scaling -- Renormalization -- Subset Geometry -- Flow in Disordered Media -- Elastic Properties of Disordered Media -- Diffusion in Disordered Media -- Dynamic Processes in Disordered Media -- References -- Index. 330 $aThis course-based open access textbook delves into percolation theory, examining the physical properties of random media?materials characterized by varying sizes of holes and pores. The focus is on both the mathematical foundations and the computational and statistical methods used in this field. Designed as a practical introduction, the book places particular emphasis on providing a comprehensive set of computational tools necessary for studying percolation theory. Readers will learn how to generate, analyze, and comprehend data and models, with detailed theoretical discussions complemented by accessible computer codes. The book's structure ensures a complete exploration of worked examples, encompassing theory, modeling, implementation, analysis, and the resulting connections between theory and analysis. Beginning with a simplified model system?a model porous medium?whose mathematical theory is well-established, the book subsequently applies the same framework to realistic random systems. Key topics covered include one- and infinite-dimensional percolation, clusters, scaling theory, diffusion in disordered media, and dynamic processes. Aimed at graduate students and researchers, this textbook serves as a foundational resource for understanding essential concepts in modern statistical physics, such as disorder, scaling, and fractal geometry. 410 0$aLecture Notes in Physics,$x1616-6361 ;$v1029 606 $aStatistical physics 606 $aCondensed matter 606 $aSystem theory 606 $aPorous materials 606 $aMathematical physics 606 $aComputer simulation 606 $aGeophysics 606 $aStatistical Physics 606 $aPhase Transition and Critical Phenomena 606 $aComplex Systems 606 $aPorous Materials 606 $aComputational Physics and Simulations 606 $aGeophysics 615 0$aStatistical physics. 615 0$aCondensed matter. 615 0$aSystem theory. 615 0$aPorous materials. 615 0$aMathematical physics. 615 0$aComputer simulation. 615 0$aGeophysics. 615 14$aStatistical Physics. 615 24$aPhase Transition and Critical Phenomena. 615 24$aComplex Systems. 615 24$aPorous Materials. 615 24$aComputational Physics and Simulations. 615 24$aGeophysics. 676 $a530.13 700 $aMalthe-Sørenssen$b Anders$0792273 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910869180003321 996 $aPercolation Theory Using Python$94180219 997 $aUNINA