LEADER 00959nam a2200265 i 4500 001 991000186689707536 005 20020506110507.0 008 990609s1996 de ||| | eng 020 $a3540632034 035 $ab10042350-39ule_inst 035 $aLE02614651$9ExL 040 $aDip.to Ingegneria dell'Innovazione$bita 082 0 $a620.192 100 1 $aStrobl, Gert R.$022106 245 14$aThe Physics of polymers :$bconcepts for understanding their structures and behavior /$cGert R. Strobl 250 $a2nd corrected ed. 260 $aBerlin [etc] :$bSpringer,$cc 1996 300 $axi, 439 p. ;$c24 cm 650 4$aPolimeri 907 $a.b10042350$b21-09-06$c31-05-02 912 $a991000186689707536 945 $aLE026 620.192 STR 01.01 1996$g1$i2026000005355$lle026$o-$pE0.00$q-$rl$s- $t4$u10$v0$w10$x0$y.i10049320$z31-05-02 996 $aPhysics of Polymers$9135726 997 $aUNISALENTO 998 $ale026$b01-01-99$cm$da $e-$feng$gde $h4$i1 LEADER 00734nam0-2200253 --450 001 9910867597103321 005 20240708145836.0 100 $a20240708d1965----kmuy0itay5050 ba 101 0 $aeng 102 $aNL 105 $aa 001yy 200 1 $aAgar gel electrophoresis$fby R. J. Wieme 210 $aAmsterdam [etc.]$cElsevier Publishing Company$dİ1965 215 $aXIII, 425 p.$cill.$d23 cm 610 0 $aElettroforesi su gel di agarosio 676 $a574.1920724$v19$zita 700 1$aWieme,$bR. J.$01743946 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9910867597103321 952 $aA MIC 2661$b9629/2024$fFAGBC 959 $aFAGBC 996 $aAgar gel electrophoresis$94173553 997 $aUNINA LEADER 05094nam 2200709 a 450 001 9911018949403321 005 20200520144314.0 010 $a0-470-61245-2 010 $a0-470-39458-7 010 $a1-280-60346-1 010 $a9786610603466 010 $a1-84704-477-8 010 $a1-84704-577-4 035 $a(CKB)1000000000335555 035 $a(EBL)700737 035 $a(OCoLC)836408422 035 $a(SSID)ssj0000267258 035 $a(PQKBManifestationID)11204590 035 $a(PQKBTitleCode)TC0000267258 035 $a(PQKBWorkID)10334092 035 $a(PQKB)11098705 035 $a(MiAaPQ)EBC700737 035 $a(MiAaPQ)EBC261986 035 $a(Au-PeEL)EBL261986 035 $a(OCoLC)156942673 035 $a(PPN)260392790 035 $a(EXLCZ)991000000000335555 100 $a20060509d2006 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aVibration in continuous media /$fJean-Louis Guyader ; series editors, Societe Francaise d'Acoustique 210 $aNewport Beach, Calif. $cISTE$d2006 215 $a1 online resource (443 p.) 225 1 $aISTE 300 $a"First published in France in 2002 by Hermes Science/Lavoisier entitled "Vibrations des milieux continus"--t.p. verso. 311 $a1-905209-27-4 320 $aIncludes bibliographical references and index. 327 $aCover; Vibration in Continuous Media; Title Page; Copyright Page; Table of Contents; Preface; Chapter 1. Vibrations of Continuous Elastic Solid Media; 1.1. Objective of the chapter; 1.2. Equations of motion and boundary conditions of continuous media; 1.2.1. Description of the movement of continuous media; 1.2.2. Law of conservation; 1.2.3. Conservation of mass; 1.2.4. Conservation of momentum; 1.2.5. Conservation of energy; 1.2.6. Boundary conditions; 1.3. Study of the vibrations: small movements around a position of static, stable equilibrium 327 $a1.3.1. Linearization around a configuration of reference1.3.2. Elastic solid continuous media; 1.3.3. Summary of the problem of small movements of an elastic continuous medium in adiabatic mode; 1.3.4. Position of static equilibrium of an elastic solid medium; 1.3.5. Vibrations of elastic solid media; 1.3.6. Boundary conditions; 1.3.7. Vibrations equations; 1.3.8. Notes on the initial conditions of the problem of vibrations; 1.3.9. Formulation in displacement; 1.3.10. Vibration of viscoelastic solid media; 1.4. Conclusion 327 $aChapter 2. Variational Formulation for Vibrations of Elastic Continuous Media2.1. Objective of the chapter; 2.2. Concept of the functional, bases of the variational method; 2.2.1. The problem; 2.2.2. Fundamental lemma; 2.2.3. Basis of variational formulation; 2.2.4. Directional derivative; 2.2.5. Extremum of a functional calculus; 2.3. Reissner's functional; 2.3.1. Basic functional; 2.3.2. Some particular cases of boundary conditions; 2.3.3. Case of boundary conditions effects of rigidity and mass; 2.4. Hamilton's functional; 2.4.1. The basic functional 327 $a2.4.2. Some particular cases of boundary conditions2.5. Approximate solutions; 2.6. Euler equations associated to the extremum of a functional; 2.6.1. Introduction and first example; 2.6.2. Second example: vibrations of plates; 2.6.3. Some results; 2.7. Conclusion; Chapter 3. Equation of Motion for Beams; 3.1. Objective of the chapter; 3.2. Hypotheses of condensation of straight beams; 3.3. Equations of longitudinal vibrations of straight beams; 3.3.1. Basic equations with mixed variables; 3.3.2. Equations with displacement variables 327 $a3.3.3. Equations with displacement variables obtained by Hamilton's functional3.4. Equations of vibrations of torsion of straight beams; 3.4.1. Basic equations with mixed variables; 3.4.2. Equation with displacements; 3.5. Equations of bending vibrations of straight beams; 3.5.1. Basic equations with mixed variables: Timoshenko's beam; 3.5.2. Equations with displacement variables: Timoshenko's beam; 3.5.3. Basic equations with mixed variables: Euler-Bernoulli beam; 3.5.4. Equations of the Euler-Bernoulli beam with displacement variable 327 $a3.6. Complex vibratory movements: sandwich beam with a flexible inside 330 $aThree aspects are developed in this book: modeling, a description of the phenomena and computation methods. A particular effort has been made to provide a clear understanding of the limits associated with each modeling approach. Examples of applications are used throughout the book to provide a better understanding of the material presented. 410 0$aISTE 606 $aVibration 606 $aContinuum mechanics 615 0$aVibration. 615 0$aContinuum mechanics. 676 $a531/.32 700 $aGuyader$b Jean-Louis$0912233 712 02$aSociete Francaise d'Acoustique. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911018949403321 996 $aVibration in continuous media$92042581 997 $aUNINA