LEADER 03207nam 22005775 450 001 9910865258903321 005 20240530101645.0 010 $a9789819702251 010 $a9819702259 024 7 $a10.1007/978-981-97-0225-1 035 $a(MiAaPQ)EBC31357826 035 $a(Au-PeEL)EBL31357826 035 $a(CKB)32169704300041 035 $a(OCoLC)1436830086 035 $a(DE-He213)978-981-97-0225-1 035 $a(EXLCZ)9932169704300041 100 $a20240529d2024 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aKolmogorov Operators and Their Applications /$fedited by Stéphane Menozzi, Andrea Pascucci, Sergio Polidoro 205 $a1st ed. 2024. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2024. 215 $a1 online resource (354 pages) 225 1 $aSpringer INdAM Series,$x2281-5198 ;$v56 311 08$a9789819702244 311 08$a9819702240 327 $aChapter 1. Local Regularity for the Landau Equation (with Coulomb Interaction Potential) -- Chapter 2. L 2 Hypocoercivity methods for kinetic Fokker-Planck equations with factorised Gibbs states -- Chapter 3. New Perspectives on recent trends for Kolmogorov operators -- Chapter 4. Schauder estimates for Kolmogorov-Fokker-Planck operators with coefficients measurable in time and Holder continuous in space.-Chapter 5. A new proof of the geometric Soboleva embedding for generalised Kolmogorov operators -- Chapter 6. Intrinsic Taylor formula for non-homogeneous Kolmogorov-type Lie groups -- Chapter 7. Form-boundedness and sdes with singular drift -- Chapter 8. About the regularity of degenerate non-local Kolmogorov operators under diffusive perturbations -- Chapter 9. Integration by parts formula for exit times of one dimensional diffusions -- Chapter 10. On averaged control and iteration improvement for a class of multidimensional ergodicdiffusions. 330 $aKolmogorov equations are a fundamental bridge between the theory of partial differential equations and that of stochastic differential equations that arise in several research fields. This volume collects a selection of the talks given at the Cortona meeting by experts in both fields, who presented the most recent developments of the theory. Particular emphasis has been given to degenerate partial differential equations, Itô processes, applications to kinetic theory and to finance. 410 0$aSpringer INdAM Series,$x2281-5198 ;$v56 606 $aDifferential equations 606 $aStochastic analysis 606 $aDifferential Equations 606 $aStochastic Analysis 615 0$aDifferential equations. 615 0$aStochastic analysis. 615 14$aDifferential Equations. 615 24$aStochastic Analysis. 676 $a515.35 700 $aMenozzi$b Stéphane$01742556 701 $aPascucci$b Andrea$0475297 701 $aPolidoro$b Sergio$01742557 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910865258903321 996 $aKolmogorov Operators and Their Applications$94169306 997 $aUNINA