LEADER 00844cam a2200229 i 4500 001 991001888909707536 008 000614s1995 it 000 0 ita 020 $a8824311385 035 $ab11578919-39ule_inst 040 $aDip.to Studi Giuridici$bita 100 1 $aDe Martino, Francesco$078850 245 10$aDiritto privato /$cFrancesco De Martino 260 $aNapoli :$bE. Jovene,$c[1995] 300 $axxiii, 722 p. :$b1 ritr. ;$c24 cm 490 0 $aAntiqua ;$v72 490 0 $aDiritto, economia e società nel mondo romano ;$v1 907 $a.b11578919$b01-03-17$c02-07-02 912 $a991001888909707536 945 $aLE027 R-XX/DEM (1) C.2$cV. 1$g1$iLE027-2716$lle027$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i11786139$z02-07-02 996 $aDiritto privato$9886682 997 $aUNISALENTO 998 $ale027$b01-01-00$cm$da $e-$fita$git $h0$i1 LEADER 03322nam 22004935 450 001 9910864179603321 005 20250918132728.0 010 $a3-031-55914-2 024 7 $a10.1007/978-3-031-55914-3 035 $a(MiAaPQ)EBC31352504 035 $a(Au-PeEL)EBL31352504 035 $a(CKB)32141991600041 035 $a(DE-He213)978-3-031-55914-3 035 $a(PPN)278785131 035 $a(EXLCZ)9932141991600041 100 $a20240523d2024 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe p-adic Simpson Correspondence and Hodge-Tate Local Systems /$fby Ahmed Abbes, Michel Gros 205 $a1st ed. 2024. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2024. 215 $a1 online resource (450 pages) 225 1 $aLecture Notes in Mathematics,$x1617-9692 ;$v2345 311 08$a3-031-55913-4 327 $aPreface -- An overview -- Preliminaries -- Local Study -- Global Study -- Relative cohomologies of Higgs-Tate algebras.Local Study -- Relative cohomology of Dolbeault modules -- References -- Index. 330 $aThis book delves into the p-adic Simpson correspondence, its construction, and development. Offering fresh and innovative perspectives on this important topic in algebraic geometry, the text serves a dual purpose: it describes an important tool in p-adic Hodge theory, which has recently attracted significant interest, and also provides a comprehensive resource for researchers. Unique among the books in the existing literature in this field, it combines theoretical advances, novel constructions, and connections to Hodge-Tate local systems. This exposition builds upon the foundation laid by Faltings, the collaborative efforts of the two authors with T. Tsuji, and contributions from other researchers. Faltings initiated in 2005 a p-adic analogue of the (complex) Simpson correspondence, whose construction has been taken up in several different ways. Following the approach they initiated with T. Tsuji, the authors develop new features of the p-adic Simpson correspondence, inspired by their construction of the relative Hodge-Tate spectral sequence. First, they address the connection to Hodge-Tate local systems. Then they establish the functoriality of the p-adic Simpson correspondence by proper direct image. Along the way, they expand the scope of their original construction. The book targets a specialist audience interested in the intricate world of p-adic Hodge theory and its applications, algebraic geometry and related areas. Graduate students can use it as a reference or for in-depth study. Mathematicians exploring connections between complex and p-adic geometry will also find it valuable. . 410 0$aLecture Notes in Mathematics,$x1617-9692 ;$v2345 606 $aGeometry, Algebraic 606 $aAlgebraic Geometry 615 0$aGeometry, Algebraic. 615 14$aAlgebraic Geometry. 676 $a516.35 700 $aAbbes$b Ahmed$0510226 701 $aGros$b Michel$01307890 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910864179603321 996 $aThe P-Adic Simpson Correspondence and Hodge-Tate Local Systems$94165767 997 $aUNINA