LEADER 00851nam0-22002651i-450- 001 990003034120403321 035 $a000303412 035 $aFED01000303412 035 $a(Aleph)000303412FED01 035 $a000303412 100 $a20000920d1982----km-y0itay50------ba 101 0 $aita 102 $aIT 200 1 $a<>Confronto tra le stesse imprese rilevate al 1973 e al 1978$eDati nazionali delle imprese manifatturiere con oltre 10 addetti$fMediocredito Centrale. 210 $aRoma$cMediocredito Centrale$d1982. 215 $av., XXXIII, 561 p.$d28 cm 610 0 $aPiccole imprese 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990003034120403321 952 $aA/8 MED$b12259 b /I$fSES 959 $aSES 996 $aConfronto tra le stesse imprese rilevate al 1973 e al 1978$9463588 997 $aUNINA DB $aING01 LEADER 03941nam 22005895 450 001 9910863150603321 005 20250626163845.0 010 $a3-030-58215-9 024 7 $a10.1007/978-3-030-58215-9 035 $a(CKB)4100000011558546 035 $a(DE-He213)978-3-030-58215-9 035 $a(MiAaPQ)EBC6386144 035 $a(PPN)252507266 035 $a(MiAaPQ)EBC29092605 035 $a(EXLCZ)994100000011558546 100 $a20201106d2020 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdvances in Harmonic Analysis and Partial Differential Equations /$fedited by Vladimir Georgiev, Tohru Ozawa, Michael Ruzhansky, Jens Wirth 205 $a1st ed. 2020. 210 1$aCham :$cSpringer International Publishing :$cImprint: Birkhäuser,$d2020. 215 $a1 online resource (X, 317 p. 5 illus., 2 illus. in color.) 225 1 $aTrends in Mathematics,$x2297-024X 311 08$a3-030-58214-0 327 $aLocal smoothing of Fourier integral operators and Hermite functions -- On () -classes on the Engel group -- Gelfand triples for the Kohn?Nirenberg quantization on homogeneous Lie groups -- A multiplicity result for a non-homogeneous subelliptic problem with Sobolev exponent -- The Dixmier trace and the noncommutative residue for multipliers on compact manifolds -- On the focusing energy-critical 3D quintic inhomogeneous NLS -- Lifespan of solutions to nonlinear Schrödinger equations with general homogeneous nonlinearity of the critical order -- Spectral theory for magnetic Schrödinger operators in exterior domains with exploding and oscillating long-range potentials -- Simple proof of the estimate of solutions to Schrödinger equations with linear and sub-linear potentials in modulation spaces -- Remark on asymptotic order for the energy critical nonlinear damped wave equation to the linear heat equation via the Strichartz estimates -- On uniqueness for the generalized Choquard equation -- Characterization of the ground state to the intercritical NLS with a linear potential by the virial functional -- Well-posedness for a generalized Klein-Gordon-Schrödinger equations. 330 $aThis book originates from the session "Harmonic Analysis and Partial Differential Equations" held at the 12th ISAAC Congress in Aveiro, and provides a quick overview over recent advances in partial differential equations with a particular focus on the interplay between tools from harmonic analysis, functional inequalities and variational characterisations of solutions to particular non-linear PDEs. It can serve as a useful source of information to mathematicians, scientists and engineers. The volume contains contributions of authors from a variety of countries on a wide range of active research areas covering different aspects of partial differential equations interacting with harmonic analysis and provides a state-of-the-art overview over ongoing research in the field. It shows original research in full detail allowing researchers as well as students to grasp new aspects and broaden their understanding of the area. 410 0$aTrends in Mathematics,$x2297-024X 606 $aMathematical analysis 606 $aHarmonic analysis 606 $aOperator theory 606 $aAnalysis 606 $aAbstract Harmonic Analysis 606 $aOperator Theory 615 0$aMathematical analysis. 615 0$aHarmonic analysis. 615 0$aOperator theory. 615 14$aAnalysis. 615 24$aAbstract Harmonic Analysis. 615 24$aOperator Theory. 676 $aQA377 676 $a515.2433 702 $aGeorgiev$b Vladimir 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910863150603321 996 $aAdvances in harmonic analysis and partial differential equations$92165629 997 $aUNINA