LEADER 10731nam 22004453 450 001 9910861096903321 005 20240517080251.0 010 $a981-9720-23-0 035 $a(MiAaPQ)EBC31342528 035 $a(Au-PeEL)EBL31342528 035 $a(CKB)32029746500041 035 $a(EXLCZ)9932029746500041 100 $a20240517d2024 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNanotechnology Based Strategies for Combating Antimicrobial Resistance 205 $a1st ed. 210 1$aSingapore :$cSpringer Singapore Pte. Limited,$d2024. 210 4$d©2024. 215 $a1 online resource (585 pages) 311 $a981-9720-22-2 327 $aIntro -- Preface -- Contents -- Editors and Contributors -- About the Editors -- Contributors -- 1: Antimicrobial Resistance: An Overview -- 1.1 Introduction -- 1.2 Antibiotics and Its Resistance -- 1.3 Resistance among ESKAPE Pathogens -- 1.3.1 Enterococcus faecium -- 1.3.2 Klebsiella pneumoniae -- 1.3.3 Acinetobacter baumannii -- 1.3.4 Pseudomonas aeruginosa -- 1.3.5 Enterobacter spp -- 1.4 Antibiotic Resistance -- 1.4.1 Resistance to ?-Lactam Antibiotics -- 1.4.1.1 Methicillin -- 1.4.1.2 Cephalosporins -- 1.4.1.2.1 Ceftobiprole and Ceftaroline -- 1.4.1.3 Carbapenem -- 1.4.2 Resistance to Antibiotics of Non-?-Lactams Category -- 1.4.2.1 Aminoglycosides -- 1.4.2.1.1 Plazomicin -- 1.4.2.2 Tigecycline -- 1.4.2.2.1 Eravacycline -- 1.4.2.3 Colistin -- 1.4.2.4 Macrolides -- 1.4.2.5 Fluoroquinolones -- 1.4.2.6 Vancomycin -- 1.4.2.7 Linezolid -- 1.4.2.8 Fosfomycin -- 1.4.2.9 Daptomycin -- 1.5 Mechanistic Basis of Antibiotic Resistance -- 1.5.1 Intrinsic Resistome -- 1.5.2 Extrinsic Resistome -- 1.5.3 HGT and Antibiotic Resistance -- 1.5.4 Plasmid-Mediated Antibiotic Resistance -- 1.6 Bioflim and Antibiotic Resistance -- 1.6.1 Biofilm Resistance and Tolerance -- 1.6.2 Biofilm Susceptibility Testing -- 1.7 Resistance in the Environment -- 1.7.1 Pollution as a Driver -- 1.8 Health Assessment -- 1.8.1 Environmental Transmission -- 1.8.2 Exposure Estimates and Risk Assessments -- 1.8.3 Mortality (Direct and Indirect Attribute to Antibiotic Rresistance) -- 1.8.3.1 Direct Mortality Attributed to Antibiotic Resistance -- 1.8.3.2 Indirect Mortality Mediated by Antibiotic Resistance -- 1.9 Conclusions and Future Prospective -- References -- 2: Role of Nanomedicine in Overcoming Antimicrobial Resistance: Challenges and Opportunities -- 2.1 Introduction -- 2.2 Mechanism of Nanosystems to Combat Antimicrobial Resistance. 327 $a2.3 Classification of Nanosystems -- 2.3.1 Inorganic Nanosystems -- 2.3.2 Organic Nanosystems -- 2.3.2.1 Liposomes -- 2.3.2.2 Polymeric Micelles -- 2.3.2.3 Lipid-Based Nanoparticles -- 2.4 Synergistic Effects of Nanosystems with Antibiotics -- 2.4.1 Enhanced Antibacterial Activity -- 2.4.2 Combating Antibiotic Resistance -- 2.4.3 Synergistic Effects of Combination Therapy -- 2.4.4 Targeted Drug Delivery -- 2.5 Novel Approaches for Combatting Antimicrobial Resistance with Nanosystems -- 2.5.1 Lipid Polymer Nanoparticles (LPNs) -- 2.5.2 Phage Therapy -- 2.5.3 Nanoantibiotic -- 2.6 Challenges of Nanomedicine in Combatting Antimicrobial Resistance -- 2.7 Conclusion and Future Perspectives -- References -- 3: Nanotechnology-Based Tools to Overcome Antimicrobial Resistance -- 3.1 Introduction -- 3.2 Classifications of Nanoparticles -- 3.3 Mechanical Properties of Nanomaterials -- 3.4 Current Antimicrobial Resistance Threats -- 3.5 Microbial Resistance Mechanism to Antimicrobials -- 3.6 Role of Biofilms in Antimicrobial Resistance -- 3.6.1 Biofilm Formation -- 3.6.2 Characteristics of Biofilm Formation -- 3.7 Nanotechnology for Antimicrobial Resistance -- 3.7.1 Nanomaterials Against Bacteria -- 3.7.2 Nanomedicines for Antimicrobial Resistance -- 3.8 Recent Advancements in Combating Antimicrobial Resistance -- 3.9 Future Perspectives -- 3.10 Conclusion -- References -- 4: Metal Nanoparticles As Alternative Antimicrobial Agents to Combat Multidrug Resistance Bacteria -- 4.1 Introduction -- 4.2 MNPs and Their Conjugates for Bacterial Detection -- 4.2.1 MNPs -- 4.2.2 MNP Conjugates -- 4.2.2.1 Colorimetric Detection -- 4.2.2.2 Fluorescence-Based Detection -- 4.2.2.3 Nonlinear Optical (NLO) Response-based Detection -- 4.2.2.4 Magnetic Methods -- 4.2.2.5 Electrochemical Methods -- 4.2.2.6 Other Methods. 327 $a4.3 MNPs for Bacterial Treatment -- 4.3.1 MNPs -- 4.3.1.1 Mechano-bactericidal -- 4.3.1.2 Releasing Metal Ions -- 4.3.1.3 Photothermal -- 4.3.1.4 MNPs for Combination Therapy -- 4.3.2 MNP Conjugates -- 4.3.2.1 Photothermal Therapy -- 4.3.2.2 Photodynamic and Photothermal Combination Therapy -- 4.3.2.3 Chemotherapy and Photothermal Combination Therapy -- 4.4 MNPs for Bacterial Theranostics -- 4.4.1 MNPs -- 4.4.2 MNP Conjugates -- 4.5 Summary and Perspectives -- References -- 5: Plant Extract-Mediated Synthesis and Antibacterial Potential of Metallic Nanoparticles -- 5.1 Introduction -- 5.2 Nanoparticles: An Overview -- 5.2.1 Introduction to Nanoparticles -- 5.2.2 Types of Nanoparticles -- 5.2.3 Applications of Metallic Nanoparticles -- 5.3 Green Synthesis of Metallic Nanoparticles -- 5.3.1 Principles of Green Synthesis -- 5.3.2 Role and Advantages of Plant Extracts in Nanoparticle Synthesis -- 5.4 Case Studies: Plant-Mediated Metallic Nanoparticles and Antibacterial Activity -- 5.4.1 Silver Nanoparticles (AgNPs) -- 5.4.2 Mechanism of Action for the AgNPs -- 5.4.3 Copper and Copper Oxide Nanoparticles (cu/CuONPs) -- 5.4.4 Mechanism of Action for Copper Nanoparticles -- 5.4.5 Gold Nanoparticles (AuNPs) -- 5.4.6 Mechanism of Action for au NPs -- 5.5 Conclusion and Future Perspectives -- References -- Glossary -- 6: Functionalized Quantum Dots as Antimicrobial Agents -- 6.1 Introduction -- 6.2 Functionalized QDs and Antimicrobial Action -- 6.2.1 ROS Production -- 6.2.2 Microbial Membranes in Interaction -- 6.2.3 Blocking of Intracellular Mechanisms -- 6.2.4 Effects Dependent on Size -- 6.2.5 Functionalization of Surfaces -- 6.2.6 Photothermal Consequences -- 6.3 Polymer QDs -- 6.3.1 Graphene QDs -- 6.3.2 Cadmium QDs -- 6.3.3 Peptide- and Drug-Functionalized Fluorescent QDs -- 6.3.4 ZnO QDs. 327 $a6.3.5 Amino-Functionalized QDs -- 6.3.6 Nanocomposite Material QDs -- 6.3.7 Lead-Based QDs -- 6.3.8 Indium Phosphide QDs -- 6.3.9 Silicon QDs -- 6.3.10 Perovskite QDs -- 6.3.11 Cytotoxicity and Biocompatibility of QDs for Future Scope -- 6.4 Conclusion -- References -- 7: Antimicrobial Peptide-Based Nanomaterials in Combating Multidrug-Resistant Bacteria -- 7.1 Introduction -- 7.2 The History of Antimicrobial Peptides -- 7.3 Importance and Development of AMPs -- 7.4 Classification of AMPs -- 7.5 Mechanism of Action of AMP -- 7.6 AMP-Based Nanomaterials -- 7.7 Advancements in AMP Delivery Via Nanomaterials -- 7.8 Therapeutic Applications of AMPs -- 7.9 Factors Affecting the Activity of AMPs -- 7.10 Challenges and Advantages in AMP-Based Nanomaterials -- 7.11 Conclusion and Future Prospects -- References -- 8: Nanocomposites in Combating Antimicrobial Resistance -- 8.1 Introduction -- 8.1.1 Nanocomposite Materials: Fundamentals and Types -- 8.1.2 Basics of Nanocomposites -- 8.1.3 Types of Nanocomposite Materials -- 8.2 Mechanisms of Antimicrobial Resistance -- 8.2.1 How Microorganisms Develop Resistance? -- 8.2.2 Challenges Posed by Antimicrobial Resistance -- 8.3 Carbon Nanocomposites -- 8.4 Metallic Nanocomposites -- 8.5 Metalloid Nanocomposites -- 8.6 Polymer Nanocomposites -- 8.7 Ceramic Nanocomposites -- 8.8 Conclusion and Future Prospects -- References -- 9: Carbon Nanomaterials as Antimicrobial Agents to Combat Multidrug Resistance -- 9.1 Introduction -- 9.2 Multidrug Resistance -- 9.3 Carbon Nanomaterials -- 9.3.1 Structure and Properties of Carbon Nanostructures -- 9.3.2 Carbon Nanomaterials and their Antimicrobial Mechanisms -- 9.3.2.1 Antimicrobial Properties of Carbon Nanotubes -- 9.3.2.2 Antimicrobial Properties of Fullerenes -- 9.3.2.3 Antimicrobial Properties of Graphene/Graphene Oxide. 327 $a9.4 Conclusion -- References -- 10: Polymer-Based Nanomaterials Against Multidrug-Resistant Bacteria -- 10.1 Introduction -- 10.2 Nanomaterials -- 10.2.1 Polymer-Based Nanomaterials -- 10.2.1.1 Nanoparticles -- 10.2.1.2 Nanofibers -- 10.2.1.3 Nanohydrogels -- 10.2.1.4 Nanocomposites -- 10.3 Multidrug-Resistant Bacteria -- 10.3.1 Limiting Drug Uptake -- 10.3.2 Drug Targeting Modification -- 10.3.3 Inactivation of the Drug -- 10.3.4 Efflux Pumps -- 10.3.5 Resistance Mechanisms Through Biofilm Formation -- 10.4 Polymer-Based Nanomaterials Against Multidrug-Resistant Bacteria -- 10.4.1 Mechanisms of Action -- 10.4.1.1 Membrane Targeting Mechanisms -- 10.4.1.2 Nonmembrane Targeting Mechanisms -- 10.4.1.2.1 Production of Reactive Oxygen Species -- 10.4.1.2.2 Binding to and Damaging Intracellular Components -- 10.4.1.3 Mechanisms of Action Against Biofilms -- 10.5 Conclusion and Future Perspectives -- References -- 11: Development of Nanoemulsion-Based Drug Carrier Molecules in the Fight Against Multi-Drug Resistance -- 11.1 Introduction -- 11.1.1 Nanoemulsions -- 11.1.2 Nanoemulsions for Drug Delivery -- 11.1.3 Properties of Nanoemulsions -- 11.1.4 Preparation of Nanoemulsions -- 11.1.4.1 Lipids and Oils -- 11.1.4.2 Proteins -- 11.1.4.3 Polysaccharides -- 11.1.4.4 Surfactants -- 11.1.4.5 Emulsifiers -- 11.1.4.6 Ripening Inhibitors -- 11.1.4.7 Plasticizers -- 11.2 The Application of Nanoemulsions Against Multi-Drug-Resistant Microorganisms -- 11.3 Conclusion and Future Perspectives -- References -- 12: Nanoemulsions as Drug Carriers to Combat AMR -- 12.1 Introduction -- 12.2 Antimicrobial Resistance (AMR) -- 12.3 Bacterial Resistance Mechanism Towards Traditional Antibiotics -- 12.4 Antimicrobial Resistance: A Global Threat -- 12.5 Nanotechnology to Combat AMR -- 12.6 Nanoemulsions: A Basic Introduction. 327 $a12.7 Different Components of a Nanoemulsion System. 700 $aWani$b Mohmmad Younus$01214292 701 $aWani$b Irshad Ahmad$01739447 701 $aRai$b Akhilesh$01739448 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910861096903321 996 $aNanotechnology Based Strategies for Combating Antimicrobial Resistance$94163462 997 $aUNINA