LEADER 09954nam 22005533 450 001 9910861038303321 005 20240407090435.0 010 $a0-7503-4115-7 035 $a(MiAaPQ)EBC31252866 035 $a(Au-PeEL)EBL31252866 035 $a(CKB)31356172900041 035 $a(EXLCZ)9931356172900041 100 $a20240407d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNanoparticle Enhanced Radiation Therapy $ePrinciples, Methods and Applications 205 $a1st ed. 210 1$aBristol :$cInstitute of Physics Publishing,$d2021. 210 4$dİ2020. 215 $a1 online resource (320 pages) 225 1 $aIOP Series in Global Health and Radiation Oncology Series 311 $a0-7503-2397-3 327 $aIntro -- Editor biographies -- Erno Sajo -- Piotr Zygmanski -- Contributors -- Introduction -- Outline placeholder -- Rationale of nanoparticle-enhanced radiotherapy -- The organization of this book -- References -- Chapter 1 The role of Auger electrons versus photoelectrons in nanoparticle dose enhancement -- 1.1 Fundamentals of the Auger process -- 1.2 The role of fluorescent photons -- 1.3 The contribution of Auger electrons and photoelectrons to dose -- 1.4 Angular anisotropy of electron emission from the GNP -- 1.5 Conclusions -- References -- Chapter 2 Deterministic computation benchmarks of nanoparticle dose enhancement-part I. Nanometer scales -- 2.1 Perspectives -- 2.2 The radiation transport basis of high-Z nanoparticle dose enhancement by x-rays -- 2.3 Deterministic radiation transport computations -- 2.4 The Green's function of dose enhancement -- 2.5 Maximum and spatially averaged dose enhancement ratios -- 2.6 The optimal incident photon energy -- 2.7 Discussion -- 2.8 Conclusions -- 2.9 Appendix -- References -- Chapter 3 Deterministic computation benchmarks of nanoparticle dose enhancement-part II. Microscopic to macroscopic scales -- 3.1 The effect of concentration distributions -- 3.2 Radiation transport computations -- 3.2.1 Case-1 geometries -- 3.2.2 Case-2 geometries -- 3.3 Macroscopic DER effects in case-1 geometries -- 3.3.1 Dependence on concentration in a fixed tumor volume -- 3.3.2 Depth and volume dependence for diffusion in one direction -- 3.3.3 Depth and volume dependence for diffusion in two directions -- 3.3.4 Kerma approximation of dose -- 3.3.5 The effective distance of dose enhancement -- 3.4 Microscopic effects in case-2 geometries-the inadequacy of spatial homogenization -- 3.5 Discussion -- 3.6 Conclusions -- References. 327 $aChapter 4 Mechanisms of low energy electron interactions with biomolecules: relationship to gold nanoparticle radiosensitization -- 4.1 Introduction -- 4.1.1 Gold nanoparticle (GNP) radiosensitization -- 4.1.2 Primary mechanisms -- 4.1.3 Biological damage induced by low energy electrons (LEEs) -- 4.2 Interaction of LEEs with condensed-phase biomolecules -- 4.2.1 Basic principles of interaction of LEEs with molecules -- 4.2.2 Transient molecular anions (TMAs) and their decay channels -- 4.2.3 Modification of electron capture and decay of transient anions in biological media -- 4.2.4 Short range and high damage efficiency of LEEs -- 4.3 Interaction of LEEs with water and DNA -- 4.3.1 LEE interaction with water and the indirect effect of radiation -- 4.3.2 Mechanisms of LEE-induced DNA and cellular damage -- 4.3.3 DNA damage from GNP-generated LEEs and LEE-bombarded GNP-DNA complexes -- 4.4 Conclusions and future trends -- 4.5 Abbreviations -- Acknowledgments -- References -- Chapter 5 Monte Carlo models of electron transport for dose-enhancement calculations in nanoparticle-aided radiotherapy -- 5.1 Introduction -- 5.2 The challenge -- 5.3 Monte Carlo simulation of electron transport -- 5.4 Condensed-history models (class I code) -- 5.5 Mixed condensed-history models (class II codes) -- 5.6 The case of PENELOPE and Geant4 -- 5.7 Role of condensed-history simulation in NRT -- 5.8 Track-structure models -- 5.9 Track-structure models for water -- 5.10 Track-structure codes for non-aqueous media -- 5.11 The case of TRAX and Geant4-DNA -- 5.12 Surface effects -- 5.13 Role of TS models in NRT -- 5.14 Monte Carlo codes in NRT -- References -- Chapter 6 Nanoparticle-aided radiation therapy: challenges of treatment planning -- 6.1 Introduction -- 6.2 Nature of energy absorption near high-Z NPs -- 6.3 Uptake and dispersion prediction of NPs. 327 $a6.4 Nanoparticle distribution within tissues and organs -- 6.5 Determination of NP concentrations on the macroscopic scale -- 6.6 Cellular internalization -- 6.7 Dosimetry in the presence of NPs -- 6.8 NPRT dosimetry on the macroscopic scale -- 6.9 NPRT dosimetry on the microscopic scale -- 6.10 Challenges to modelling biological response -- 6.11 Further evidence for an NP-induced biological effect -- 6.12 Conclusions and a look forward -- References -- Chapter 7 Nanoparticle enhanced radiotherapy: quality assurance perspective -- 7.1 General -- 7.2 Imaging and verification of NP distribution -- 7.3 Macroscopic dose calculation -- 7.4 Radiobiological effect from macroscopic dose enhancement -- 7.5 Microscopic dose calculation -- 7.6 Radiobiological effect from microscopic dose enhancement -- 7.7 Summary -- 7.8 Experimental/computation setup -- 7.9 Benchmark and validation tests and data -- References -- Chapter 8 Optimal nanoparticle concentrations, toxicity and safety and gold nanoparticle design for radiation therapy applications -- 8.1 Introduction -- 8.2 Biomedical applications of gold nanoparticles -- 8.3 Gold nanoparticles are effective, biocompatible tumor-targeting nanocarriers -- 8.4 Gold nanoparticles in radiation therapy -- 8.5 Challenges of GNP radiotherapy -- 8.6 Design considerations for optimal radiosensitization using GNPs -- 8.7 Size and concentration/dose of GNPs -- 8.8 Surface charge and multi-functionalities of GNPs -- 8.9 Toxicity and safety associated with GNP-based radiotherapy -- 8.10 AuRad platform -- 8.11 AuRad Platform targeting tumor vasculature -- 8.12 AuRad platform tumor vasculature disruption -- 8.13 Summary -- References -- Chapter 9 Translational nanomaterials for cancer radiation therapy -- 9.1 Introduction -- 9.1.1 Silica-based nanoparticles -- 9.1.2 Superparamagnetic iron oxide nanoparticles (SPIONs). 327 $a9.1.3 Quantum dots (QDs) -- 9.2 High-Z metals and radiosensitization -- 9.2.1 Platinum nanoparticles -- 9.2.2 Gold nanoparticles -- 9.2.3 Hafnium oxide nanoparticles -- 9.3 Theranostics nanoparticles -- 9.3.1 Gadolinium nanoparticles -- 9.3.2 Bismuth complexes and nanoparticles -- 9.4 Mechanism of action -- 9.5 Bystander effect -- References -- Chapter 10 Gold nanoparticle enhanced radiosensitivity of cells: considerations and contradictions from model systems and basic investigations of cell damaging for radiation therapy -- 10.1 Cell viability upon cell irradiation in the presence of nanoparticles-colony formation assay (CFA) -- 10.2 DNA damage upon cell irradiation in the presence of nanoparticles-super-resolution microscopic analysis of ?H2AX foci -- 10.3 Nanoparticle-mediated radio-sensitization of tumor cells independent of nuclear DNA damage -- 10.4 Conclusions -- 10.5 Materials and methods -- 10.5.1 Cell culture, gold nanoparticle incorporation, and specimen irradiation -- 10.5.2 Clonogenic assay (colony forming assay) -- 10.5.3 ?H2AX immunostaining -- 10.5.4 Single molecule localization microscopy -- Acknowledgement -- References -- Chapter 11 Super-resolution microscopy of nanogold-labelling -- 11.1 Electron microscopy -- 11.2 Light microscopy and localization microscopy -- Acknowledgments -- References -- Chapter 12 X-ray based nanoparticle imaging -- 12.1 Computed tomography (CT) -- 12.2 Dual- and multi-energy CT (DECT, MECT) -- 12.3 X-ray fluorescence computed tomography (XFCT) -- 12.4 SPECT/PET -- References -- Chapter 13 MRI based nanoparticle imaging -- References -- Chapter 14 Nanoparticle detection using photoacoustic imaging (PAI) -- References -- Chapter 15 Radiotherapy application with in situ dose-painting (RAiD) via inhalation delivery -- 15.1 Introduction -- 15.2 Materials and methods -- 15.3 Results -- 15.4 Discussion. 327 $a15.5 Conclusion -- Acknowledgments -- References -- Chapter 16 High-Z ORAYA therapy for wet AMD and ocular cancers -- 16.1 Introduction -- 16.2 Materials and methods -- 16.3 Results -- 16.4 Discussion -- References -- Chapter 17 Cerium oxide and titanium dioxide -- 17.1 Introduction -- 17.2 CONP mediated ROS scavenging -- 17.3 TONP aided radiation sensitization -- 17.4 Discussion -- References -- Chapter 18 Accelerated Partial Breast Irradiation (APBI) -- 18.1 Methods -- 18.2 Results -- 18.3 Discussion -- 18.4 Conclusion -- References. 330 $aThe central purpose of nanoparticle enhanced radiotherapy (NPRT) is to more precisely control where the radiation dose is to be delivered, desirably with subcellular precision. The contents of this text covers the rationale and fundamental principles of NPRT, optimal nanoparticle size, concentrations and clinical applications. This volume will serve as a resource for researchers, educators and industry. 410 0$aIOP Series in Global Health and Radiation Oncology Series 700 $aSajo$b Erno$01741215 701 $aZygmanski$b Piotr$01741216 701 $aCifter$b Fulya$01741217 701 $aZheng$b Yi$0648579 701 $aSanche$b Leon$01741218 701 $aEmfietzoglou$b Dimitris$01741219 701 $aIncerti$b Sebastien$01741220 701 $aKirkby$b Charles$01741221 701 $aKoeger$b Brandon$01741222 701 $aBrivio$b Davide$01741223 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910861038303321 996 $aNanoparticle Enhanced Radiation Therapy$94167198 997 $aUNINA