LEADER 01782oam 2200529 450 001 9910717090903321 005 20211229125042.0 035 $a(CKB)5470000002527293 035 $a(OCoLC)761385683 035 $a(OCoLC)995470000002527293 035 $a(EXLCZ)995470000002527293 100 $a20111115j198105 ua 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aStochastic analysis of spectral broadening by a free turbulent shear layer /$fJay C. Hardin and John S. Preisser 210 1$aWashington, DC :$cNational Aeronautics and Space Administration, Scientific and Technical Information Branch,$dMay 1981. 215 $a1 online resource (approximately 28 pages) $cillustrations 225 1 $aNASA/TP ;$v1816 300 $a"May 1981." 320 $aIncludes bibliographical references (page 22). 606 $aStochastic processes$2nasat 606 $aAcoustics$2nasat 606 $aAcoustical engineering$2fast 606 $aSound$2fast 606 $aStochastic analysis$2fast 615 7$aStochastic processes. 615 7$aAcoustics. 615 7$aAcoustical engineering. 615 7$aSound. 615 7$aStochastic analysis. 700 $aHardin$b Jay C.$01414566 702 $aPreisser$b John S. 712 02$aUnited States.$bNational Aeronautics and Space Administration.$bScientific and Technical Information Branch, 801 0$bOCLCE 801 1$bOCLCE 801 2$bOCLCQ 801 2$bOCLCF 801 2$bOCLCO 801 2$bOCLCQ 801 2$bGPO 906 $aBOOK 912 $a9910717090903321 996 $aStochastic analysis of spectral broadening by a free turbulent shear layer$93514170 997 $aUNINA LEADER 05698oam 2200625Mu 450 001 9910860841903321 005 20240513142848.0 010 $a1-00-305625-3 010 $a1-000-09198-8 010 $a1-003-05625-3 010 $a1-000-09186-4 024 7 $a10.1201/9781003056256. 035 $a(CKB)4100000011528599 035 $a(MiAaPQ)EBC6379067 035 $a(OCoLC)1202451998$z(OCoLC)1202305746$z(OCoLC)1202470352$z(OCoLC)1202601784$z(OCoLC)1232849428 035 $a(OCoLC-P)1202451998 035 $a(FlBoTFG)9781003056256 035 $a(EXLCZ)994100000011528599 100 $a20201031d2020 uy 0 101 0 $aeng 135 $aurcnu---unuuu 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aEntropy-Enthalpy Compensation $eFinding a Methodological Common Denominator Through Probability, Statistics, and Physics 205 $a1st ed. 210 $aMilton $cJenny Stanford Publishing$d2020 215 $a1 online resource (xvii, 398 pages) 300 $aDescription based upon print version of record. 311 $a981-4877-30-1 320 $aIncludes bibliographical references and index. 327 $aCover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- 1. Entropy-Enthalpy Compensation and Exploratory Factor Analysis of Correlations: Are There Common Points? -- 1.1 Introduction -- 1.2 Results and Discussion -- 1.2.1 Macroscopic Thermodynamics Considered from the Standpoint of van der Waals Equation of State -- 1.2.2 Correctness of Our Macroscopic-Thermodynamic Approach -- 1.2.3 What Is the Actual Difference between Gibbs and Helmholtz Functions? -- 1.2.4 The Actual Physical Sense of the EEC -- 1.2.5 Statistical-Mechanical Standpoint 327 $a1.2.6 What Is the Actual Probability Distribution behind the Statistical Mechanics? -- 1.2.7 Bayesian Statistical Thermodynamics of Real Gases -- 1.2.8 Applicability of Linhart's Approach to Real Gases -- 1.2.9 Is There Some Physical Connection between Boltzmann's and Gibbs' Entropy Formulae? -- 1.2.10 Can Our Approach Be Really Productive? -- 1.2.11 A Methodological Perspective -- 1.2.12 What Is the Actual Zest of Our Approach? -- 1.3 Conclusions -- 1.4 Outlook -- Appendix 1 to Chapter -- Appendix 2 to Chapter 1: Methodological Roots and Significance of Energetics -- A2.1 Introduction 327 $aA2.2 Energetics Is a Generally Applicable Concept -- A2.2.1 Foreword -- A2.2.2 The First Definition of Entropy -- A2.2.3 Introduction and Preliminary Concepts -- A2.2.4 Succinct Presentation of Thermodynamic Principles -- A2.2.4.1 Joule-Mayer principle -- A2.2.4.2 Principle of Carnot-Clausius -- A2.2.5 Energy and the Forms of Sensitivity -- A2.2.6 Third Part -- A2.2.6.1 The muscle system and energetics -- A2.2.6.2 Analogy between the muscle system and the nervous system -- A2.2.6.3 Energetics and the nervous system -- A2.2.6.4 Energetics and the nervous system (Continued) 327 $aA2.2.7 Thermodynamic Design of Some Mental Situations -- A2.2.8 Summary and Conclusions -- A2.3 Our General Conclusion -- A2.3.1 The Balance of Bodies: Types of Body Balance -- A2.3.2 Our Immediate Comment -- A2.4 How to Employ the Ideas of Energetics: A Methodological Reiteration -- A2.4.1 How to Make a Mechanical Theory of Mental Phenomena -- A2.4.2 -- A2.4.3 -- A2.4.4 -- A2.4.5 The Senses: Theory of the Consecutive Images -- A2.4.6 Demential Law by Paul Janet -- A2.4.7 Psychoses -- A2.4.8 Mechanical Representation of Psychic Phenomena -- A2.4.8.1 Mechanism of dementia 327 $aA2.4.8.2 Mechanism of sensations -- A2.4.8.3 Mechanism of psychoses -- A2.4.8.4 Consequences -- A2.4.8.5 Influence of the cerebral inertia coefficient -- A2.4.9 Conclusion -- Appendix 3 to Chapter 1: A Methodological Outlook -- 2. Polynomial Exploratory Factor Analysis on Molecular Dynamics Trajectory of the Ras-GAP System: A Possible Theoretical Approach to Enzyme Engineering -- 2.1 Introduction -- 2.2 Results and Discussion -- 2.2.1 Linear Exploratory Factor Analysis Results -- 2.2.2 Nonlinear Exploratory Factor Analysis Results -- 2.3 Detailed Description of the Method 330 $aProfessionals recognize entropy-enthalpy compensation as an important factor in molecular recognition, lead design, water networks, and protein engineering. It can be experimentally studied by proper combinations of diverse spectroscopic approaches with isothermal titration calorimetry and is clearly related to molecular dynamics. So, how should we treat entropy-enthalpy compensation? Is it a stubborn hindrance that solely complicates the predictability of phenomena otherwise laid on the line by Mother Nature? How should we then deal with it? This book dwells on these posers. It combines two chapters written by globally recognized specialists. Chapter 1 deals with general issues and suggests a definite approach to how we may answer the posers. Chapter 2 shows how the approach outlined might be successfully applied in a rational design of enzymes. This might provide other interesting strategic perspectives in the general theoretical physical chemistry field. 606 $aEntropy 606 $aEnthalpy 606 $aMolecular dynamics 615 0$aEntropy. 615 0$aEnthalpy. 615 0$aMolecular dynamics. 676 $a536.73 676 $a536.7 700 $aStarikov$b Evgeni$01740317 701 $aNorde?n$b Bengt$f1945-$01740318 701 $aTanaka$b Shigenori$01610508 712 02$aebrary, Inc. 801 0$bOCoLC-P 801 1$bOCoLC-P 906 $aBOOK 912 $a9910860841903321 996 $aEntropy-Enthalpy Compensation$94165962 997 $aUNINA