LEADER 10720nam 22004933 450 001 9910855385103321 005 20240505090318.0 010 $a981-9991-95-1 035 $a(MiAaPQ)EBC31318926 035 $a(Au-PeEL)EBL31318926 035 $a(CKB)31889903900041 035 $a(EXLCZ)9931889903900041 100 $a20240505d2024 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdvances in Antiviral Research 205 $a1st ed. 210 1$aSingapore :$cSpringer,$d2024. 210 4$d©2024. 215 $a1 online resource (463 pages) 225 1 $aLivestock Diseases and Management Series 311 $a981-9991-94-3 327 $aIntro -- Foreword -- Preface -- Contents -- Editors and Contributors -- About the Editors -- Contributors -- Chapter 1: Antivirals: Approaches and the Way Forward -- 1.1 Introduction -- 1.2 Historical Perspectives -- 1.3 Mechanism of Action -- 1.3.1 Antiviral Agents Targeting Virus Attachment and Entry -- 1.3.2 Antiviral Agents Targeting Virus Uncoating -- 1.3.3 Inhibitors of Virus Replication -- 1.3.3.1 Polymerase Inhibitors -- 1.3.3.2 Integrase Enzyme Inhibitors -- 1.3.4 Inhibitors of Viral Assembly -- 1.3.5 Inhibitors of Virus Release -- 1.3.6 Immunomodulation -- 1.4 Antiviral Drug Developments -- 1.4.1 DNA Viruses -- 1.4.1.1 Herpesviruses -- 1.4.1.2 Poxviruses -- 1.4.1.3 Other DNA Viruses Affecting Human Health -- 1.4.1.4 Other DNA Viruses Affecting Animal Health -- 1.4.2 RNA Viruses -- 1.4.2.1 Influenza Viruses -- 1.4.2.2 Coronaviruses -- 1.4.2.3 Zika Virus -- 1.4.2.4 Ebola Virus -- 1.4.2.5 Rabies Virus -- 1.4.2.6 Other Medically Important RNA Viruses -- 1.4.2.7 Other RNA Viruses Affecting Animal Health -- 1.5 Novel Approaches in Antiviral Drug Development -- 1.5.1 Computer-Aided Drug Designing (CADD) -- 1.5.2 Phyto-medicines as Antivirals -- 1.5.3 Extracellular Polymeric Substances as Antivirals -- 1.5.4 Exosomes as Antiviral Agents -- 1.5.5 Exosomes for Drug Delivery -- 1.6 Repurposing of Drugs as Antivirals -- 1.6.1 Strategies -- 1.6.2 Computational Tools for Drug Repurposing for Antivirals -- 1.6.3 Drug Repurposing for RNA Virus Infections -- 1.6.4 Drug Repurposing for DNA Virus Infections -- 1.7 Conclusion -- References -- Chapter 2: Bioinformatics Databases and Tools Available for the Development of Antiviral Drugs -- 2.1 Introduction -- 2.2 Databases and Resources to Advance Viral Studies and Research -- 2.2.1 Viral Bioinformatics Resource Center (VBRC) -- 2.2.2 Virus Variation Resource (NCBI-VVR). 327 $a2.2.3 Virus Pathogen Database and Analysis Resource (ViPR) -- 2.2.4 Virus-Host Interaction Databases -- 2.3 Databases for Enveloped Positive Sense RNA Virus -- 2.3.1 Databases for Coronaviruses -- 2.3.2 Databases for Flaviviruses -- 2.3.3 Databases for Alphaviruses -- 2.4 Databases for Enveloped Negative-Sense RNA Viruses -- 2.4.1 Databases for Influenza Virus -- 2.4.2 Databases for Nipah Virus -- 2.5 Bioinformatics Tools for Antiviral Development -- 2.5.1 Molecular Epidemiology and Phylogenetic Studies -- 2.5.2 Epitope Recognition -- 2.5.3 Designing siRNA Antibody -- 2.5.4 Active/Binding Site Prediction -- 2.5.5 Protein-Protein Interaction (PPI) Site Prediction -- 2.5.6 High-Throughput Virtual Screening and Molecular Docking -- 2.5.7 Quantitative Structure-Activity Relationship (QSAR) for Drug Discovery -- 2.5.8 Other Popular Tools for Viruses -- 2.6 Conclusion -- References -- Chapter 3: Developments in Computer-Aided Drug Design for Antiviral Research -- 3.1 Introduction -- 3.2 Machine Learning (ML) and Its Algorithms -- 3.2.1 Support Vector Machine (SVM) -- 3.2.2 Principal Component Analysis (PCA) -- 3.2.3 Linear Regression -- 3.2.4 Logistic Regression -- 3.2.5 k-Nearest Neighbor (KNN) -- 3.2.6 Random Forest -- 3.2.7 k-Means Clustering -- 3.2.8 Naïve Bayesian -- 3.2.9 AdaBoost (Adaptive Boosting) -- 3.2.10 Gradient Boosting -- 3.2.11 XGBoost (eXtreme Gradient Boosting) -- 3.2.12 Recursive Partitioning -- 3.3 Case Studies -- 3.3.1 Machine Learning-Guided Discovery of Antivirals Against Ebola Virus Disease -- 3.3.2 Inhibitors Against the Novel Avian Influenza Virus A/H9N2 Using XGBoost -- 3.3.3 Novel Inhibitors Against the Yellow Fever Virus -- 3.4 Deep Learning in Computer-Aided Drug Design -- 3.4.1 Deep Learning in Identifying Inhibitors Against the SARS-CoV-2 -- 3.5 Concluding Remarks -- References. 327 $aChapter 4: Organoids in Antiviral Research: Potential and Challenges -- 4.1 Introduction -- 4.2 A Brief History of Organoids -- 4.3 Diverse Applications of Organoids -- 4.3.1 High-Throughput Drug Screening -- 4.3.2 Disease Modeling -- 4.3.3 Precision Medicine and Biobanking -- 4.3.4 Regenerative Medicine -- 4.3.5 Host-Microbe Interaction -- 4.3.6 Developmental Biology -- 4.4 Organoids: Revival, Culturing, and Cryopreservation -- 4.4.1 Revival of Cryopreserved Organoids -- 4.4.2 Culturing and Passaging of Organoids -- 4.4.3 Cryopreservation of Organoids -- 4.5 Organoids: An Effective Tool for Antiviral Studies -- 4.5.1 Enteric Viruses -- 4.5.2 Zika Virus -- 4.5.3 SARS-CoV-2 -- 4.5.4 Other Respiratory Viruses -- 4.5.5 Other Viruses -- 4.6 Challenges and Future Prospects -- References -- Chapter 5: Metabolomics Tools in Antiviral Research -- 5.1 Introduction -- 5.2 Tools for Measuring the Metabolome -- 5.2.1 Sample Extraction and Internal Standards -- 5.2.2 Sample Introduction Via Direct Infusion -- 5.2.3 Pre-Ionization Separation -- 5.2.4 Ionization Sources -- 5.2.5 Post-Ionization Separation -- 5.2.6 Mass Analysis -- 5.2.7 Tandem Mass Spectrometry -- 5.2.8 MS and MS/MS Scan and Data Acquisition Modes -- 5.2.9 Mass Spectrometry Imaging -- 5.2.10 Metabolite Annotation and Identification -- 5.2.11 Metabolomics Data Processing and Analysis -- 5.3 Applications of Metabolomics Tools in the Development of Antivirals and Therapeutics -- 5.4 Conclusions -- References -- Chapter 6: Epigenetic- and Epitranscriptomic-Targeted Reprogramming: Novel Targets for the Development of Broad-Spectrum Antivirals -- 6.1 Introduction -- 6.2 Epigenetic Modifications -- 6.2.1 DNA Methylation -- 6.2.2 Histone Modifications -- 6.2.2.1 Histone Acetylation -- 6.2.2.2 Histone Methylation -- 6.2.2.3 Histone Phosphorylation -- 6.2.2.4 Histone Ubiquitination. 327 $a6.2.2.5 Histone Sumoylation -- 6.3 Epigenetic Repression and Strategies Evolved by Viruses to Avoid it -- 6.4 Antiviral Drugs Targeting Epigenetic Modifications -- 6.4.1 Histone Deacetylation Inhibitors -- 6.4.1.1 Vorinostat -- 6.4.1.2 Romidepsin (Istodax) -- 6.4.2 DNA Methylating Agents -- 6.4.2.1 5-Azacytidine (Vidaza) -- 6.4.2.2 5-Aza-2?-Deoxycytidine (Decitabine) -- 6.5 Epitranscriptomic Modifications -- 6.5.1 N6-Methyladenosine (m6A) -- 6.5.2 5-Methylcytidine (m5C) -- 6.5.3 N4-Acetylcytidine -- 6.5.4 2?O-Methylation -- 6.6 Methods to Map the Epitranscriptomic Modifications -- 6.7 Epitranscriptomic Modifications as a Target for Antiviral Therapy -- 6.7.1 Inhibition of Viral Gene Expression -- 6.7.2 Modulation of Viral Immune Evasion -- 6.7.3 RNA-Based Vaccines and Therapies -- 6.8 Challenges and Future Prospects of Epigenetic and Epitranscriptomic Drugs -- 6.9 Conclusion -- References -- Chapter 7: Application of Cryoelectron Microscopy in Antiviral Research -- 7.1 Introduction -- 7.1.1 Structure-Based Drug Design (SBDD) -- 7.1.2 In Silico Screening -- 7.1.3 Combinatorial Approach -- 7.1.4 Fragment-Based Drug Design (FBDD) -- 7.1.5 Proteolysis-Targeting Chimera -- 7.2 Modes for Generation of High-Resolution Structural Information -- 7.2.1 Sample Preparation -- 7.2.2 Grid Preparation -- 7.2.3 Sample Freezing -- 7.2.4 CryoEM Imaging and Acquisition -- 7.2.5 Image Processing, Reconstruction, and Refinement -- 7.3 Comparison of CryoEM with Other Structural Techniques: Unique Advantages -- 7.4 Examples of Application of CryoEM in Drug Development -- 7.5 Role of CryoEM in Viral Structure Elucidation and Antiviral Development -- 7.5.1 Whole Virus Capsids -- 7.5.2 Virus-Receptor Complexes and Blocking the Early Stages of Entry -- 7.5.3 Nonstructural Viral Proteins and Protein Complexes. 327 $a7.6 Future Prospects of CryoEM in Accelerating Antiviral Drug Discovery and Potential Challenges -- References -- Chapter 8: Host-Directed Antiviral Therapy -- 8.1 Introduction -- 8.1.1 Immunomodulatory Therapies -- 8.1.2 Cell-Based Therapies -- 8.1.3 Host Factor Targeting Therapies -- 8.1.4 Repurposed Drugs -- 8.1.5 Natural Products -- 8.2 Conclusion -- References -- Chapter 9: Role of Herbal Formulations in Antiviral Therapy - an Overview -- 9.1 Introduction -- 9.1.1 Respiratory Tract Syndrome -- 9.1.2 Gastroenteritis Viral Syndrome -- 9.1.3 Central Nervous System Viral Syndrome -- 9.1.4 Ocular Viral Syndrome -- 9.1.5 Hepatitis Viral Syndrome -- 9.1.6 Cutaneous Viral Syndrome -- 9.1.7 Genitourinary Viral Syndrome -- 9.2 Evolving and Reemerging Herbal Medicine -- 9.2.1 Antiviral Medicinal Plants and Phytochemicals -- 9.3 Research on Antiviral Formulations -- 9.4 Antiviral Herbal Formulations in Clinical Trials -- 9.4.1 Kovir (TD0069) Capsule (Registered Number: NCT05044650) -- 9.4.2 Immunoxel Honey Lozenges (Registered Number: NCT01061593) -- 9.4.3 Qi-Tonifying Chinese Herbal Products (Registered Number: NCT01631032) -- 9.4.4 Covidex? (Registered Number: NCT05228626) -- 9.4.5 Kan-Jang® (Registered Number: NCT04847518) -- 9.4.6 Chinese Herbal Medicine (Registered Number: NCT05269511) -- 9.4.7 Xagrotin (Registered Number: NCT05017493) -- 9.4.8 Curcumin C3 Complex (Registered Number: NCT04266275) -- 9.4.9 Septilin® (Registered Number: NCT02013323) -- 9.4.10 Modified Qing Fei Pai Du Tang (mQFPD) (Registered Number: NCT04939415) -- 9.4.11 Hesperidin and Diosmin Mixture (Registered Number: NCT04452799) -- 9.4.12 Sho-Saiko-to (SST) (Registered Number: NCT00633230) -- 9.5 Patented Antiviral Herbal Formulations -- 9.5.1 Antiviral CHM Composition, Its Preparation Method, and Use -- 9.5.2 Treatment of Hepatitis C. 327 $a9.5.3 Antivirus Chinese Herbal Medicine Composition, Traditional Chinese Medicine Composition, and Preparation Method Thereof. 410 0$aLivestock Diseases and Management Series 676 $a615.7924 700 $aKumar$b Naveen$0510029 701 $aMalik$b Yashpal Singh$01075314 701 $aTomar$b Shailly$01738094 701 $aEzzikouri$b Sayeh$01738095 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910855385103321 996 $aAdvances in Antiviral Research$94160101 997 $aUNINA