LEADER 08253nam 22004333 450 001 9910855377803321 005 20240507080230.0 010 $a3-031-53341-0 035 $a(MiAaPQ)EBC31319162 035 $a(Au-PeEL)EBL31319162 035 $a(CKB)31918507300041 035 $a(EXLCZ)9931918507300041 100 $a20240507d2024 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aPersistent Organic Pollutants in Aquatic Systems $eClassification, Toxicity, Remediation and Future 205 $a1st ed. 210 1$aCham :$cSpringer International Publishing AG,$d2024. 210 4$d©2024. 215 $a1 online resource (171 pages) 225 1 $aEmerging Contaminants and Associated Treatment Technologies Series 311 $a3-031-53340-2 327 $aIntro -- Preface -- Contents -- Abbreviations -- List of Figures -- List of Tables -- About the Authors -- Chapter 1: Classifications, Sources, and Significant Features of POPs in Aquatic Environment with Special Reference to Dirty Dozen -- 1.1 An Overview of the Definition and Significant Features of POPs in the Aquatic Environment -- 1.2 Classification of POPs -- 1.2.1 Class I: Polycyclic Aromatic Hydrocarbons (PAHs) -- 1.2.2 Class II: Pesticides -- 1.2.2.1 Classification of Pesticides According to Their Target -- 1.2.3 Class III: PCB -- 1.3 Sources of POPs -- 1.3.1 Anthropogenic Sources of POPs -- 1.4 Source Identification of PAHs -- 1.5 Literary Concept on POPs -- 1.5.1 HCHs -- 1.5.2 Cyclodiene -- 1.5.3 DDTs -- 1.5.4 PCBs -- 1.5.5 Dioxins -- 1.5.6 Brominated Flame Retardants (BFRs) -- 1.6 The Development of Pesticide Application, Industry, and Management -- 1.7 Banned POPs: Dirty Dozen and Nasty Nine -- 1.7.1 Dirty Dozen POPs -- 1.7.2 Nasty Nine POPs -- References -- Chapter 2: Chemistry of POPs Referring to Scenarios and Forecasting the Effects of Global Change -- 2.1 Chemical and Physical Behavior of POPs -- 2.2 The Chemistry of POPs -- 2.3 Processes Controlling the Global Scale of POP Cycle -- 2.4 POP Migration (Grasshopper Effect) -- 2.5 Models for Global Distribution of POPs -- 2.6 Predicting the Impact of Potential Global Change Scenarios on POP Bioaccumulation Patterns -- 2.6.1 Emission Fractionation Model for Chemical Management of Long-Range Transport Potential (LRTP) of POPs -- References -- Chapter 3: SOP for Determination of POPs -- 3.1 Scope -- 3.2 Procedures -- 3.2.1 Sampling -- 3.2.2 Storage -- 3.2.3 List of Reagents -- 3.2.3.1 Cleaning of Reagents and Adsorbents -- 3.2.4 List of Apparatus -- 3.2.5 List of Materials -- 3.3 Sediments -- 3.3.1 Sampling -- 3.3.2 Cleaning of Extraction Thimbles -- 3.3.3 Extraction of Sediment. 327 $a3.3.3.1 Extraction of Freeze-Dried Samples -- 3.3.3.2 Extraction of Wet Samples -- 3.3.4 Pre-concentration of the Extract -- 3.3.5 EOM -- 3.3.6 Cleanup -- 3.3.7 Sulfur/Sulfur Compound Removal -- 3.3.8 Mercury Method -- 3.3.9 Activated Cupper Method -- 3.3.10 Fractionation -- 3.3.10.1 Florisil -- 3.3.11 Gel Permeation Chromatography (GPC) -- 3.4 Biota -- 3.4.1 Sampling -- 3.4.2 Tissue Extraction -- 3.4.2.1 Freeze-Dried Samples -- 3.4.2.2 Extraction Procedure Without Freeze-Drying -- 3.4.3 Concentration -- 3.4.4 EOM -- 3.4.5 Clean Procedure and Fractionation -- 3.4.6 Removal of Lipids -- 3.4.7 Fractionation -- 3.5 Gas Chromatographic Determinations (GC) -- 3.5.1 Capillary Column -- 3.5.2 Quantification -- 3.5.3 QA/QC -- 3.5.3.1 Precision -- 3.5.3.2 Accuracy -- 3.5.3.3 Blank -- 3.5.3.4 Recovery -- 3.5.3.5 Results and Reporting -- 3.6 A Look at Portable and Modern Sampling Techniques Semipermeable Membrane Devices (SPMD): Structure and Activity -- References -- Chapter 4: Toxicology and Ecological Risk with Emphasis on Scenario-Describing Mechanisms -- 4.1 Highlighting the Impact of POPs on Ecosystems and Humans -- 4.2 Toxicity of OCPs and PCBs -- 4.2.1 Environment -- 4.2.2 Scenario Discerning the Mode of Action and Toxicity of POPs in Nematodes -- 4.2.3 Toxicity of Pesticides in Aqueous Environment (Photo Response) -- 4.2.4 Biochemical Toxicity of Organochlorines -- 4.3 Human Health -- 4.3.1 PCB Impact on Human Health -- 4.4 Equations Describing POP Toxicity -- 4.4.1 Human Health Risk -- 4.4.1.1 Dietary Assessment -- 4.4.1.2 USEPA's ILCR Model -- 4.4.1.3 Probit Functions -- 4.4.2 The Ecological Risk Assessment -- 4.4.2.1 Risk Characterization -- 4.4.2.2 Single Pesticide -- 4.4.2.2.1 Cocktail of Pesticide -- 4.4.2.3 Ecological Risk Assessment for PCBs in Water -- 4.4.2.4 PCB Source Apportionment by Positive Matrix Factorization (PMF). 327 $a4.4.2.5 A Model for Source, Distribution, and Toxicity of PAHs (CMB-TEQ) -- 4.4.2.6 Biological Indices -- 4.4.2.6.1 Species at Risk (SPEAR) Index -- 4.5 Induced Chronic Effects of POPs -- 4.5.1 Effects on Immune Systems -- 4.5.2 Endocrine Effects -- 4.5.3 Impacts on Behavior, Development, and the Nervous System -- 4.5.4 Carcinogenesis -- 4.5.5 Reproductive Effects -- References -- Chapter 5: POPs in Aquatic Systems of Worldwide Polluted Sites Referring to Bibliometric Approach -- 5.1 Global Distribution of PCBs and PCDDs -- 5.2 Evaluation of Recent Ecological Status in Egypt Relative to POPs (Recent Cases Studies: Timescale Overview) -- 5.2.1 Cases Studies -- 5.2.2 Timescale Overview of POPs -- 5.3 Quick Survey of POPs in Aquatic Systems of Worldwide Hot Spots -- 5.3.1 Adriatic Sea -- 5.3.2 Arctic Zone -- 5.3.3 Baltic Sea -- 5.3.4 Brazil -- 5.3.5 China -- 5.3.6 Czech Republic -- 5.3.7 Ghana -- 5.3.8 India -- 5.3.9 Japan -- 5.3.10 Korea -- 5.3.11 Mediterranean Sea -- 5.3.12 Mexico -- 5.3.13 Poland -- 5.3.14 Portugal -- 5.3.15 Red Sea Coasts -- 5.3.16 Singapore -- 5.3.17 Spain -- 5.3.18 Taiwan -- 5.3.19 Thailand -- 5.3.20 USA -- 5.3.21 Vietnam -- 5.3.22 Bay of Bengal -- 5.4 A Bibliometric Analysis of POPs Publications Around the World -- References -- Chapter 6: Fate, Bioaccumulation, Remediation, and Prevention of POPs in Aquatic Systems Regarding Future Orientation -- 6.1 Fate of POPs in Aquatic System -- 6.2 Cycle of Organic Pollutants in the Water Column -- 6.2.1 Vertical Variability of Organic Pollutants -- 6.3 Bioconcentration and Biomagnification -- 6.3.1 The Accumulation of POPs in Aquatic Organisms -- 6.4 Prevention and Remediation -- 6.4.1 Bioremediation -- 6.4.1.1 Biodegradation -- 6.4.1.1.1 Aerobic Degradation -- 6.4.1.1.2 Anaerobic Degradation -- 6.4.1.2 Ectomycorrhizal Biotechnology's Function in Pesticide Cleanup. 327 $a6.4.1.3 Genetically Modified Organism (GMO)-Based Remediation Technology -- 6.4.1.4 Multi-omics Technologies -- 6.4.2 Chemical Degradation -- 6.4.2.1 Chemical Degradation and Thermal Degradation of POPs Using Multifunctional Materials -- 6.4.2.2 Electrochemical Remediation -- 6.4.2.3 Bio-electrokinetic and Bio-electrochemical Remediation -- 6.4.2.4 Photocatalytic Degradation of POPs by Multifunctional Materials -- 6.4.2.5 Efficient Nanomaterials for Removing POPs -- 6.5 Predictive Models of POP Residues (Fate and Mobility) -- 6.5.1 A Model for Predicting DDT Fate -- 6.5.2 A Model for Prediction of Annual Contribution Rate of POPs to Sediment (Temporal-Dynamic) -- 6.6 Indicators of Sustainable Remediation -- 6.7 Economy and Environmental Remediation -- 6.7.1 Economics of Global Remediation Sector -- 6.8 Conclusion -- 6.9 Recommendations -- 6.10 Future Challenges and Prospects -- 6.10.1 Future Orientation Toward PFAS -- 6.10.1.1 Origins and Classification -- 6.10.1.2 Synthesis of PFAS by Electrochemical Fluorination (ECF) -- 6.10.1.3 Adverse Health Effects of PFAS in Human -- 6.10.1.4 Recommended Future Approaches Toward PFAS Toxicity -- 6.10.1.5 Regulations and Innovations -- References -- Index. 410 0$aEmerging Contaminants and Associated Treatment Technologies Series 700 $aSaid$b Tarek Othman$01737618 701 $aEl Zokm$b Gehan Mohamed$01358175 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910855377803321 996 $aPersistent Organic Pollutants in Aquatic Systems$94159597 997 $aUNINA